循环冲击层理煤岩动力学行为及破坏规律研究

罗宁 索云琛 张浩浩 柴亚博 翟成 屈喆 白桂智

罗宁, 索云琛, 张浩浩, 柴亚博, 翟成, 屈喆, 白桂智. 循环冲击层理煤岩动力学行为及破坏规律研究[J]. 爆炸与冲击, 2023, 43(4): 043102. doi: 10.11883/bzycj-2022-0253
引用本文: 罗宁, 索云琛, 张浩浩, 柴亚博, 翟成, 屈喆, 白桂智. 循环冲击层理煤岩动力学行为及破坏规律研究[J]. 爆炸与冲击, 2023, 43(4): 043102. doi: 10.11883/bzycj-2022-0253
LUO Ning, SUO Yunchen, ZHANG Haohao, CHAI Yabo, ZHAI Cheng, QU Zhe, BAI Guizhi. On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact[J]. Explosion And Shock Waves, 2023, 43(4): 043102. doi: 10.11883/bzycj-2022-0253
Citation: LUO Ning, SUO Yunchen, ZHANG Haohao, CHAI Yabo, ZHAI Cheng, QU Zhe, BAI Guizhi. On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact[J]. Explosion And Shock Waves, 2023, 43(4): 043102. doi: 10.11883/bzycj-2022-0253

循环冲击层理煤岩动力学行为及破坏规律研究

doi: 10.11883/bzycj-2022-0253
基金项目: 国家重点研发计划(2020YFA0711800);国家自然科学基金(12072363);爆炸科学与技术国家重点实验室(北京理工大学)开放基金(KFJJ22-02M)
详细信息
    作者简介:

    罗 宁(1980- ),男,博士,教授,博士生导师,nluo@cumt.edu.cn

  • 中图分类号: O385

On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact

  • 摘要: 为研究复杂地况下含特征层理煤岩的动态力学行为,采用$\varnothing $50 mm分离式霍普金森压杆实验系统,对含层理 (0°、30°、45°、60°、90°)煤岩进行动态三轴循环冲击实验研究,并结合3D轮廓扫描仪量化其断裂界面,分析层理效应和围压效应对煤岩动态力学特性及其损伤破坏规律的影响。研究表明:围压的施加使煤岩应力-应变曲线出现弹性后效现象;较无围压状态,抗压强度提高3.9~4.2倍,失效应变增大2.59~3.05倍。随着层理角度的增大,煤岩的动态抗压强度、弹性模量和能量透射率均呈现先降低后升高的U形分布,在层理角为45°时均达到最小值;能量吸收率和断面粗糙度呈现先增大后减小的∩形分布,损伤变量呈现N形分布,在层理角为45°时达到最大值。煤岩的损伤破坏特征随层理角度的变化可概括为张拉破坏(0°)-剪切破坏(30°、45°和60°)-劈裂破坏(90°)的演变过程,所得特征规律可为实际复杂环境下煤层气资源安全高效开采提供理论支持。
  • 图  1  加工前后的层理煤岩

    Figure  1.  Bedding coal rocks before and after processing

    图  2  0°层理煤岩的CT图

    Figure  2.  CT image of 0° bedding coal rock

    图  3  动态三轴SHPB测试系统

    Figure  3.  Dynamic triaxial SHPB test system

    图  4  煤岩时间应力均匀的试验验证

    Figure  4.  Experimental verification of coal rock stress uniformity

    图  5  含不同特征层理煤岩动态测试中的子弹速度和入射能量

    Figure  5.  Velocity and incident energy of the bullets in dynamical tests on coal rock samples with different bedding angles

    图  6  不同围压下45°层理煤岩的应力-应变曲线

    Figure  6.  Stress-strain curves of 45° bedding coal rock under different confining pressures

    图  7  无围压条件下含不同特征层理煤岩试样的动态抗压强度

    Figure  7.  Dynamic compressive strengths of coal rock samples with different bedding angles without confining pressure

    图  8  抗压强度随围压和层理角度的变化

    Figure  8.  Variation of compressive strength with confining pressure and bedding angle

    图  9  不同围压下煤岩弹性模量随层理角度的变化

    Figure  9.  Variation of elastic modulus of coal rock with bedding angle at different confining pressures

    图  10  P波在等效层理面上的反射和透射

    Figure  10.  Reflection and transmission of P-waves at the equivalent bedding plane

    图  11  不同围压下煤岩能量分配率随层理角度的变化

    Figure  11.  Variation of energy distribution ratio of coal rock with bedding angle at different confining pressures

    图  12  体积能量耗散和可释放应变能

    Figure  12.  Energy dissipation and releasable strain energy per unit volume

    图  13  损伤变量随层理角度的变化

    Figure  13.  Variation of damage variable with bedding angle

    图  14  在2.5 MPa围压下不同层理角度煤岩断裂面的初始照片和三维扫描图

    Figure  14.  Original photographs and 3-D scans of fracture interfaces of coal rocks with bedding angles at the confining pressure of 2.5 MPa

    图  15  在5.0 MPa围压下不同层理角度煤岩断裂面的初始照片和三维扫描图

    Figure  15.  Original photographs and 3-D scans of fracture interfaces of coal rocks with bedding angles at the confining pressure of 5.0 MPa

    图  16  在7.5 MPa围压下不同层理角度煤岩断裂面的初始照片和三维扫描图

    Figure  16.  Original photographs and 3-D scans of fracture interfaces of coal rocks with bedding angles at the confining pressure of 7.5 MPa

    图  17  在10.0 MPa围压下不同层理角度煤岩断裂面的初始照片和三维扫描图

    Figure  17.  Original photographs and 3-D scans of fracture interfaces of coal rocks with bedding angles at the confining pressure of 10.0 MPa

    图  18  煤岩断裂面的粗糙度随层理角度和抗压强度的变化

    Figure  18.  Roughness of fracture interface of coal rock varied with bedding angle and compressive strength

    图  19  煤岩在不同围压和层理角度作用下的破坏模式

    Figure  19.  Failure modes of coal rocks with different bedding angles at different confining pressures

    图  20  煤岩在不同层理角度下的损伤形式

    Figure  20.  Damage modes of coal rocks with different bedding angles

  • [1] 叶建平, 史保生, 张春才. 中国煤储层渗透性及其主要影响因素 [J]. 煤炭学报, 1999, 24(2): 8–12. DOI: 10.3321/j.issn:0253-9993.1999.02.002.

    YE J P, SHI B S, ZHANG C C. Coal reservoir permeability and its controlled factors in China [J]. Journal of China Coal Society, 1999, 24(2): 8–12. DOI: 10.3321/j.issn:0253-9993.1999.02.002.
    [2] MOORE T A. Coalbed methane: a review [J]. International Journal of Coal Geology, 2012, 101: 36–81. DOI: 10.1016/j.coal.2012.05.011.
    [3] HAMAWAND I, YUSAF T, HAMAWAND S G. Coal seam gas and associated water: a review paper [J]. Renewable and Sustainable Energy Reviews, 2013, 22: 550–560. DOI: 10.1016/j.rser.2013.02.030.
    [4] WANG D K, LV R H, WEI J P, et al. An experimental study of the anisotropic permeability rule of coal containing gas [J]. Journal of Natural Gas Science and Engineering, 2018, 53: 67–73. DOI: 10.1016/j.jngse.2018.02.026.
    [5] 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究 [J]. 科学通报, 2005, 50(S1): 66–71. DOI: 10.3321/j.issn:0023-074X.2005.z1.009.

    FU X H, QIN Y, ZHANG W H, et al. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane [J]. Chinese Science Bulletin, 2005, 50(S1): 66–71. DOI: 10.3321/j.issn:0023-074X.2005.z1.009.
    [6] LI B B, YANG K, XU P, et al. An experimental study on permeability characteristics of coal with slippage and temperature effects [J]. Journal of Petroleum Science and Engineering, 2019, 175: 294–302. DOI: 10.1016/j.petrol.2018.12.048.
    [7] 吴飞鹏, 刘洪志, 任杨, 等. 燃爆冲击作用下岩石初始破坏区形成机制与主控因素 [J]. 爆炸与冲击, 2016, 36(5): 663–669. DOI: 10.11883/1001-1455(2016)05-0663-07.

    WU F P, LIU Z H, REN Y, et al. Formation mechanism and main controlling factors of rock’s initial damaged zone under explosive impact effect [J]. Explosion and Shock Waves, 2016, 36(5): 663–669. DOI: 10.11883/1001-1455(2016)05-0663-07.
    [8] 牟恭雨, 罗宁, 申涛, 等. 聚能射流侵彻页岩储层损伤裂隙形成机制[J]. 爆炸与冲击, 2023, 43(3): 033301. DOI: 10.11883/bzycj-2022-0182.

    MU G Y, LUO N, SHEN T, et al. Mechanism of damage-induced fracture formation in shale reservoir penetrated by shaped charge jet [J]. Explosion and Shock Waves, 2023, 43(3): 033301. DOI: 10.11883/bzycj-2022-0182.
    [9] RAMULU M, CHAKRABORTY A K, SITHARAM T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project-A case study [J]. Tunnelling and Underground Space Technology, 2009, 24(2): 208–221. DOI: 10.1016/j.tust.2008.08.002.
    [10] LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218. DOI: 10.1016/j.ijrmms.2010.11.016.
    [11] 谢和平. 深部岩体力学与开采理论研究进展 [J]. 煤炭学报, 2019, 44(5): 1283–1305. DOI: 10.13225/j.cnki.jccs.2019.6038.

    XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. DOI: 10.13225/j.cnki.jccs.2019.6038.
    [12] 鞠杨, 李业学, 谢和平, 等. 节理岩石的应力波动与能量耗散 [J]. 岩石力学与工程学报, 2006, 25(12): 2426–2434. DOI: 10.3321/j.issn:1000-6915.2006.12.007.

    JU Y, LI Y X, XIE H P, et al. Stress wave propagation and energy dissipation in jointed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2426–2434. DOI: 10.3321/j.issn:1000-6915.2006.12.007.
    [13] MA Y, PAN Z J, ZHONG N N, et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China [J]. Fuel, 2016, 180: 106–115. DOI: 10.1016/j.fuel.2016.04.029.
    [14] TAN Y L, PAN Z J, LIU J S, et al. Experimental study of permeability and its anisotropy for shale fracture supported with proppant [J]. Journal of Natural Gas Science and Engineering, 2017, 44: 250–264. DOI: 10.1016/j.jngse.2017.04.020.
    [15] ZHAO Y X, ZHAO G F, JIANG Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: laboratory experiments and numerical simulation [J]. International Journal of Coal Geology, 2014, 132: 81–93. DOI: 10.1016/j.coal.2014.08.007.
    [16] KONG X G, WANG E Y, LI S G, et al. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments [J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102395. DOI: 10.1016/j.tafmec.2019.102395.
    [17] HAO X J, DU W S, ZHAO Y X, et al. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading [J]. International Journal of Mining Science and Technology, 2020, 30(5): 659–668. DOI: 10.1016/j.ijmst.2020.06.007.
    [18] LIU X H, DAI F, ZHANG R, et al. Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity [J]. Environmental Earth Sciences, 2015, 73(10): 5933–5949. DOI: 10.1007/s12665-015-4106-3.
    [19] CHEN Y L, ZHANG Y N, LI X L. Experimental study on influence of bedding angle on gas permeability in coal [J]. Journal of Petroleum Science and Engineering, 2019, 179: 173–179. DOI: 10.1016/j.petrol.2019.04.010.
    [20] ZHAO Y X, GONG S, HAO X J, et al. Effects of loading rate and bedding on the dynamic fracture toughness of coal: laboratory experiments [J]. Engineering Fracture Mechanics, 2017, 178: 375–391. DOI: 10.1016/j.engfracmech.2017.03.011.
    [21] WANG W, ZHAO Y X, TENG T, et al. Influence of bedding planes on mode Ⅰ and mixed-mode (Ⅰ-Ⅱ) dynamic fracture toughness of coal: analysis of experiments [J]. Rock Mechanics and Rock Engineering, 2021, 54(1): 173–189. DOI: 10.1007/s00603-020-02250-9.
    [22] FAN X R, LUO N, LIANG H L, et al. Dynamic breakage characteristics of shale with different bedding angles under the different ambient temperatures [J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 3245–3261. DOI: 10.1007/s00603-021-02463-6.
    [23] 王卫华, 李夕兵, 左宇军. 非线性法向变形节理对弹性纵波传播的影响 [J]. 岩石力学与工程学报, 2006, 25(6): 1218–1225. DOI: 10.3321/j.issn:1000-6915.2006.06.020.

    WANG W H, LI X B, ZUO Y J. Effects of single joint with nonlinear normal deformation on P-wave propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1218–1225. DOI: 10.3321/j.issn:1000-6915.2006.06.020.
    [24] 李业学, 谢和平, 朱哲明, 等. 应力波穿越分形节理时的透反射规律研究 [J]. 岩石力学与工程学报, 2009, 28(1): 120–129. DOI: 10.3321/j.issn:1000-6915.2009.01.016.

    LI Y X, XIE H P, ZHU Z M, et al. Study on rules of transmission and reflection of stress wave across fractal joint [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 120–129. DOI: 10.3321/j.issn:1000-6915.2009.01.016.
    [25] 许金余, 范建设, 吕晓聪. 围压条件下岩石的动态力学特性 [M]. 西安: 西北工业大学出版社, 2012: 21–25.

    XU J Y, FAN J S, LYU X C. Dynamic mechanical properties of rock with the confining pressure [M]. Xi’an: Northwestern Polytechnical University Press, 2012: 21–25.
    [26] LEWANDOWSKI C M, COINVESTIGATOR N. Split Hopkinson (Kolsky) bar: design, testing and applications [M]. Springer, 2015: 6–12.
    [27] FAKHIMI A, AZHDARI P, KIMBERLEY J. Physical and numerical evaluation of rock strength in Split Hopkinson Pressure Bar testing [J]. Computers and Geotechnics, 2018, 102: 1–11. DOI: 10.1016/j.compgeo.2018.05.009.
    [28] FENG J J, WANG E Y, CHEN X, et al. Energy dissipation rate: an indicator of coal deformation and failure under static and dynamic compressive loads [J]. International Journal of Mining Science and Technology, 2018, 28(3): 397–406. DOI: 10.1016/j.ijmst.2017.11.006.
    [29] LUO N, SUO Y C, FAN X R, et al. Research on confining pressure effect of pore structure of coal-rich in coalbed methane under cyclic impact [J]. Energy Reports, 2022, 8: 7336–7348. DOI: 10.1016/j.egyr.2022.05.238.
    [30] SUO Y C, LUO N, CHAI Y B, et al. Experimental investigation of dynamic mechanical characteristics of inhomogeneous composite coal-sandstone combination for coalbed methane development [J]. Heliyon, 2022, 8: e11628. DOI: 10.1016/j.heliyon.2022.e11628.
    [31] 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探 [J]. 岩石力学与工程学报, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.

    XIE H P, PENG R D, JU Y, et al. On energy analysis of rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.
    [32] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001.

    XIE H P, JU, Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001.
    [33] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.

    LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.
    [34] 刘晓辉, 薛洋, 周济芳, 等. 层理煤岩动态破坏能量变化规律及损伤特征 [J]. 地下空间与工程学报, 2021, 17(4): 1052–1062.

    LIU X H, XUE Y, ZHOU J F, et al. Dynamic failure energy change and damage characteristics of bedding coal rock [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(4): 1052–1062.
    [35] 周磊, 姜亚成, 朱哲明, 等. 动载荷作用下裂隙岩体的止裂机理分析 [J]. 爆炸与冲击, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.

    ZHOU L, JIANG Y C, ZHU Z M, et al. Mechanism study of preventing crack propagation of fractured rock under dynamic loads [J]. Explosion and Shock Waves, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.
    [36] 杨国梁, 毕京九, 郭伟民, 等. 加载角度对层理页岩裂纹扩展影响的实验研究 [J]. 爆炸与冲击, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.

    YANG G L, BI J J, GUO W M, et al. Experimental study on the effect of loading angle on crack propagation in bedding shale [J]. Explosion and Shock Waves, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.
  • 加载中
图(20)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  101
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-09-21
  • 网络出版日期:  2022-10-14
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回