爆炸载荷下陶瓷颗粒增强聚氨酯复合材料动态响应数值分析

邹广平 梁正 吴松阳 唱忠良

邹广平, 梁正, 吴松阳, 唱忠良. 爆炸载荷下陶瓷颗粒增强聚氨酯复合材料动态响应数值分析[J]. 爆炸与冲击, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254
引用本文: 邹广平, 梁正, 吴松阳, 唱忠良. 爆炸载荷下陶瓷颗粒增强聚氨酯复合材料动态响应数值分析[J]. 爆炸与冲击, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254
ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254
Citation: ZOU Guangping, LIANG Zheng, WU Songyang, CHANG Zhongliang. Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading[J]. Explosion And Shock Waves, 2023, 43(7): 073104. doi: 10.11883/bzycj-2022-0254

爆炸载荷下陶瓷颗粒增强聚氨酯复合材料动态响应数值分析

doi: 10.11883/bzycj-2022-0254
基金项目: 国家自然科学基金(11972127)
详细信息
    作者简介:

    邹广平(1963- ),男,博士,教授,博士生导师,zouguangping@hrbeu.edu.cn

    通讯作者:

    唱忠良(1982- ),男,博士,讲师,lxsy@hrbeu.edu.cn

  • 中图分类号: O383

Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading

  • 摘要: 陶瓷球作为增强相加入到聚氨酯基体中,能够提高复合材料的抗冲击性能。为研究毫米级陶瓷球对聚氨酯复合材料抗冲击性能的影响,基于LS-DYNA的ALE算法对直径为4.5 mm的Al2O3陶瓷球增强聚氨酯基复合材料进行小当量爆炸载荷下的动态响应数值模拟,并探究爆炸当量和陶瓷球尺寸对复合材料性能的影响。结果表明,随着爆炸当量的提高,复合材料挠度/速度增长较为稳定且聚氨酯的吸能效率不断提升;在相同面密度下,陶瓷球尺寸越小,复合材料板受冲击载荷的变化敏感度越低,总体的加速度波动范围也变大。
  • 图  1  ALE有限元模型

    Figure  1.  ALE finite element model

    图  2  陶瓷颗粒聚氨酯复合材料有限元模型

    Figure  2.  A finite element model of ceramic particle polyurethane composites

    图  3  爆炸起始点波的传递

    Figure  3.  Wave propagation at the starting point of explosion

    图  4  爆炸冲击波的传播与反射

    Figure  4.  Propagation and reflection of blast wave

    图  5  不同爆距压力时程曲线

    Figure  5.  Time histories of pressure at different blasting distances

    图  6  超压的数值模拟与经验公式结果对比

    Figure  6.  Comparison between numerical simulation and empirical formula

    图  7  聚氨酯/陶瓷球复合结构模型

    Figure  7.  Polyurethane/ceramic ball composite structure model

    图  8  数值模拟与实验结果的剖面对比

    Figure  8.  Cross-section comparison of numerical simulation and experimental results

    图  9  复合材料底部距中心不同距离点的挠度曲线

    Figure  9.  Deflection curves of different distance points from the bottom of composite material to the center

    图  10  变形历程

    Figure  10.  Deformation history diagram

    图  11  不同材料板的加速度对比曲线

    Figure  11.  Acceleration comparison curve

    图  12  复合材料底部距中心不同距离点的速度曲线

    Figure  12.  Velocity curves of different distance points from the bottom of composite to the center

    图  13  不同爆炸当量下背波面位移/速度曲线

    Figure  13.  Displacement/velocity curves at the back wavefront for different explosion equivalents

    图  14  不同爆炸当量时,不同材料吸能对比

    Figure  14.  Comparison of energy absorption of different materials at different explosion equivalents

    图  15  不同直径陶瓷球模型

    Figure  15.  Ceramic ball models with different diameters

    图  16  爆炸当量为3 g时不同直径陶瓷球的位移曲线

    Figure  16.  Displacement curves for ceramic balls of different diameters with explosion equivalent 3 g

    图  17  不同直径陶瓷球背波面中心点的挠度曲线

    Figure  17.  Deflection curves of center points of back wave surfaces

    图  18  爆炸当量为3 g时不同直径陶瓷球的吸能曲线

    Figure  18.  Energy absorption curves for ceramic balls of different diameters with explosion equivalent 3 g

    图  19  爆炸当量为3 g时不同直径陶瓷球的加速度曲线

    Figure  19.  Acceleration curves for ceramic balls of different diameters with explosion equivalent 3 g

    表  1  TNT炸药材料参数[10]

    Table  1.   Material parameters of TNT explosive[10]

    A/GPaB/GPaR1R2ρ/(kg·m−3)D/(m·s−1)pCJ/GPae0/(GJ·m−3)ω
    3793.94.150.91590693019.57.00.35
    下载: 导出CSV

    表  2  陶瓷球材料参数

    Table  2.   Ceramic ball material parameters

    ρ/(kg·m−3)G/GPaABCMND1D2
    3859.91180.950.280.00760.60.640.10.7
    下载: 导出CSV

    表  3  剩余速度的数值模拟与实验对比

    Table  3.   Comparison of residual velocity between simulation and experiment

    初速度/(m·s−1)剩余速度/(m·s−1)
    实验数值模拟相对误差/%
    135.9000
    316.5249.4246.01.36
    下载: 导出CSV

    表  4  陶瓷球尺寸参数

    Table  4.   Dimension parameters of ceramic ball

    2rc/mmncρs/(g·mm−2)d/mmm/%
    3.016131.1860.150
    4.54951.2010.848
    6.02031.1894.348
    下载: 导出CSV
  • [1] TOUNICI A, JM MARTIN. Influence of the surface chemistry of graphene oxide on the structure-property relationship of waterborne poly(urethane urea) adhesive [J]. Materials, 2021, 14(16): 350–379. DOI: 10.3390/ma14164377.
    [2] DUANG Z, HE H, LIANG W, et al. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3 -modified epoxy resin [J]. Materials, 2018, 11(6): 905–917. DOI: 10.3390/ma11060905.
    [3] 方奕欣, 陈蔚, 蒋震宇, 等. 碳纤维和SiO2纳米颗粒增强环氧树脂复合材料的压缩性能 [J]. 复合材料学报, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.

    FANG Y X, CHENG W, JIANG Z Y, et al. Compressive properties of epoxy resin composites reinforced with carbon fiber and SiO2 nanoparticles [J]. Journal of Composite Materials, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.
    [4] EVORA V, SHUKLA A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites [J]. Materials Science & Engineering: A, 2003, 361(1): 358–366. DOI: 10.1016/S0921-5093(03)00536-7.
    [5] 钟发春, 刘忠平, 朱珈庆, 等. 纳米微球增强聚氨酯泡沫的制备及抗冲击应用 [J]. 包装工程, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.

    ZHONG F C, LIU Z P, ZHU J Q, et al. Preparation and impact resistance of polyurethane foam reinforced by nano microspheres [J]. Packaging Engineering, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.
    [6] 胡勤, 王进华, 吕娟, 等. 6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究 [J]. 振动与冲击, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.

    HU Q, WANG J H, LYU J et al. Study on ballistic properties and mechanism of 6061 aluminum alloy confined Al2O3 ceramic ball composites [J]. Vibration and Shock, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.
    [7] 郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能 [J]. 高分子材料科学与工程, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.

    ZHENG W F, ZHOU L S, YUAN T J, et al. Microwave curing kinetics and properties of particle Al2O3 reinforced epoxy resin composites [J]. Polymer materials science and Engineering, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.
    [8] 邹广平, 吴松阳, 徐舒博, 等. 石墨烯/陶瓷颗粒增强聚氨酯基复合材料动态压缩性能 [J]. 兵工学报, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.

    ZHOU G P , WU S Y , XU S B, et al. Dynamic compression properties of graphene/ceramic particle reinforced polyurethane matrix composites [J]. Acta Armamentarii, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.
    [9] ZHOU R, LU D H, JIANG Y H, et al. Mechanical properties and erosion wear resistance of polyurethane matrix composites [J]. Wear, 2005, 259(1): 676–683. DOI: 10.1016/j.wear.2005.02.118.
    [10] OUYANG X. Effects of modified Al2O3-decorated ionic liquid on the mechanical properties and impact resistance of a polyurethane elastomer [J]. Materials, 2021(16): 75–83. DOI: 10.3390/ma14164712.
    [11] ZHU F, ZHAO L. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(5): 687–699. DOI: 10.1016/j.ijimpeng.2008.12.004.
    [12] LARCHER M . Simulation of the effects of an air blast wave[R]. Ispra, Italy: Joint Research Centre, 2007.
    [13] PAWAR J M , PATNAIK A , BISWAS S K, et al. Comparison of ballistic performance of Al2O3 and AlN ceramics [J]. International Journal of Impact Engineering, 2016, 98: 42–51. DOI: 10.1016/j.ijimpeng.2016.08.002.
    [14] FOX J W, GOURLBOURNE N C. On the dynamic electromechanical loading of dielectric elastomer membranes [J]. Journal of the Mechanics & Physics of Solids, 2008, 56(8): 2669–2686. DOI: 10.1016/j.jmps.2008.03.007.
    [15] RIVLIN R S. Large elastic deformations of isotropic materials: Ⅳ: further developments of the general theory [J]. Philosophical Transactions of the Royal Society of London: Mathematical and Physical Sciences, 1948, 241(835): 379–397. DOI: 10.2307/91391.
    [16] ZOU G P, YANG Y, WU S Y, et al. Study on the penetration resistance of a honeycomb composite structure coated with polyurethane elastomer [J]. Thin-Walled Structures, 2023, 187(6): 110747. DOI: 10.1016/j.tws.2023.110747.
    [17] HENRYCH J, MAIOR R. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 286–293.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  87
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-09-16
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回