试样形状对轴承钢绝热剪切带微观组织的影响

李志刚 李淑欣 余丰 鲁思渊 王永刚

李志刚, 李淑欣, 余丰, 鲁思渊, 王永刚. 试样形状对轴承钢绝热剪切带微观组织的影响[J]. 爆炸与冲击, 2023, 43(4): 043103. doi: 10.11883/bzycj-2022-0357
引用本文: 李志刚, 李淑欣, 余丰, 鲁思渊, 王永刚. 试样形状对轴承钢绝热剪切带微观组织的影响[J]. 爆炸与冲击, 2023, 43(4): 043103. doi: 10.11883/bzycj-2022-0357
LI Zhigang, LI Shuxin, YU Feng, LU Siyuan, WANG Yonggang. Effect of the specimen shape on microstructure of the adiabatic shear band in bearing steel[J]. Explosion And Shock Waves, 2023, 43(4): 043103. doi: 10.11883/bzycj-2022-0357
Citation: LI Zhigang, LI Shuxin, YU Feng, LU Siyuan, WANG Yonggang. Effect of the specimen shape on microstructure of the adiabatic shear band in bearing steel[J]. Explosion And Shock Waves, 2023, 43(4): 043103. doi: 10.11883/bzycj-2022-0357

试样形状对轴承钢绝热剪切带微观组织的影响

doi: 10.11883/bzycj-2022-0357
基金项目: 国家自然科学基金项目(52075271)
详细信息
    作者简介:

    李志刚(1996- ),男,硕士研究生,1325537957@qq.com

    通讯作者:

    李淑欣(1975- ),女,博士,教授,lishuxin@nbu.edu.cn

  • 中图分类号: O383

Effect of the specimen shape on microstructure of the adiabatic shear band in bearing steel

  • 摘要: 绝热剪切带(ASB)的微观组织受试样几何形状的影响。对圆柱、帽形和剪切压缩型三种不同形状的试样进行分离式霍普金森压杆高速冲击试验,研究试样形状对轴承钢绝热剪切带的形成和微观组织的影响。结果表明,在应变率为1800~3100 s-1的范围内,材料对应变率的敏感性很低。圆柱试样呈现明显的应变硬化,而帽形试样和剪切压缩型试样(SCS)在不同应变率下分别出现应变硬化和无应变硬化的特征,但流变应力并未因应变硬化而提高。试样形状对ASB的微观形貌和组织有很大影响。圆柱试样上产生了窄且细长的ASB,只发生了应变诱发的晶粒细化,属于形变ASB;帽形试样和SCS则形成大片状的ASB,由等轴晶组成,且发生了体心立方体(BCC)马氏体转变为面心立方体(FCC)奥氏体的相变,属于相变ASB。尤其是SCS中ASB的等轴晶,有非常清晰的晶界,是典型的动态再结晶晶粒。温升计算结果显示,圆柱试样ASB的温升远低于奥氏体相变温度,而帽形试样和SCS的温升高于马氏体的熔点,导致局部熔融。
  • 图  1  GCr15原材料微观组织

    Figure  1.  Microstructure of GCr15 base material

    图  2  试样形状和尺寸(单位:mm)

    Figure  2.  Specimen shapes and dimensions (unit in mm)

    图  3  三种试样在准静态条件下的真实应力-应变曲线

    Figure  3.  Stress-strain curves fo three different samples under quasi static compression

    图  4  不同形状试样的应力-应变曲线

    Figure  4.  Stress-strain curves of specimens with different shapes

    图  5  断口韧窝的SEM形貌

    Figure  5.  SEM morphologies of fracture dimples

    图  6  各试样断口上的ASB形貌

    Figure  6.  ASB morphologies on fracture surfaces of different specimens

    图  7  各ASB的TEM形貌

    Figure  7.  TEM micrographs of ASBs

    图  8  ASB的温度分布

    Figure  8.  Distribution of the temperature near the shear band

    表  1  三种形状试样的罗德参数、应力三轴度和最大剪切应力

    Table  1.   Rhodes parameters, stress triaxiality and maximum shear stress of three shape specimens

    试样类型Lode参数应力三轴度最大剪切应力/MPa
    圆柱−1−0.330.0015
    帽型0.47−0.581897
    SCS0.58−0.432625
    下载: 导出CSV
  • [1] MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. DOI: 10.1016/S1359-6454(02)00526-8.
    [2] XU Y B, ZHANG J H, BAI Y L, et al. Shear localization in dynamic deformation: microstructural evolution [J]. Metallurgical and Materials Transactions A, 2008, 39(4): 811–843. DOI: 10.1007/s11661-007-9431-z.
    [3] 寿先涛, 郑必举, 樊晓都, 等. 高强度马氏体35CrMo钢的绝热剪切特性 [J]. 金属热处理, 2018, 43(10): 36–39. DOI: 10.13251/j.issn.0254-6051.2018.10.008.

    SHOU X T, ZHENG B J, FAN X D, et al. Adiabatic shear characteristic of high strength martensitic 35CrMo steel [J]. Heat Treatment of Metals, 2018, 43(10): 36–39. DOI: 10.13251/j.issn.0254-6051.2018.10.008.
    [4] 王琳, 杜文文, 姚春发, 等. 等温处理对新型高强钢力学性能和绝热剪切行为的影响 [J]. 北京理工大学学报, 2016, 36(12): 1315–1320. DOI: 10.15918/j.tbit1001-0645.2016.12.020.

    WANG L, DU W W, YAO C F, et al. Isothermal heat treatment on mechanical properties and adiabatic shear behavior of a new high-strength steel [J]. Transactions of Beijing Institute of Technology, 2016, 36(12): 1315–1320. DOI: 10.15918/j.tbit1001-0645.2016.12.020.
    [5] 范昌增, 许泽建, 何晓东, 等. 加载速率对40Cr钢Ⅱ型动态断裂特性的影响 [J]. 爆炸与冲击, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.

    FANG C Z, XU Z J, HE X D, et al. Effect of loading rate on the mode Ⅱ dynamic fracture characteristics of 40Cr steel [J]. Explosion and Shock Waves, 2021, 41(8): 083101. DOI: 10.11883/bzycj-2021-0029.
    [6] 金婷, 杨平. 高锰钢帽型样品在高速冲击下的剪切行为 [J]. 爆炸与冲击, 2017, 37(1): 150–156. DOI: 10.11883/1001-1455(2017)01-0150-07.

    JIN T, YANG P. Shear behaviors of hat-shaped high manganese steel specimens under high-speed impact [J]. Explosion and Shock Waves, 2017, 37(1): 150–156. DOI: 10.11883/1001-1455(2017)01-0150-07.
    [7] LI S X, ZHAO P C, HE Y N, et al. Microstructural evolution associated with shear location of AISI 52100 under high strain rate loading [J]. Materials Science and Engineering: A, 2016, 662: 46–53. DOI: 10.1016/j.msea.2016.03.050.
    [8] GONG X, FAN J L, HUANG B Y, et al. Microstructure characteristics and a deformation mechanism of fine-grained tungsten heavy alloy under high strain rate compression [J]. Materials Science and Engineering: A, 2010, 527(29/30): 7565–7570. DOI: 10.1016/j.msea.2010.07.102.
    [9] YAN N, LI Z Z, XU Y B, et al. Shear localization in metallic materials at high strain rates [J]. Progress in Materials Science, 2021, 119: 100755. DOI: 10.1016/j.pmatsci.2020.100755.
    [10] PEIRS J, TIRRY W, AMIN-AHMADI B, et al. Microstructure of adiabatic shear bands in Ti6Al4V [J]. Materials Characterization, 2013, 75: 79–92. DOI: 10.1016/j.matchar.2012.10.009.
    [11] JO M C, KIM S, SUH D W, et al. Effect of tempering conditions on adiabatic shear banding during dynamic compression and ballistic impact tests of ultra-high-strength armor steel [J]. Materials Science and Engineering: A, 2020, 792: 139818. DOI: 10.1016/j.msea.2020.139818.
    [12] OWOLABI G M, BOLLING D T, ODESHI A G, et al. The effects of specimen geometry on the plastic deformation of AA 2219-T8 aluminum alloy under dynamic impact loading [J]. Journal of Materials Engineering and Performance, 2017, 26(12): 5837–5846. DOI: 10.1007/s11665-017-3061-4.
    [13] ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. DOI: 10.1016/j.mechmat.2019.103102.
    [14] PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V [J]. International Journal of Impact Engineering, 2010, 37(6): 703–714. DOI: 10.1016/j.ijimpeng.2009.08.002.
    [15] LI J R, YU J L, WEI Z G. Influence of specimen geometry on adiabatic shear instability of tungsten heavy alloys [J]. International Journal of Impact Engineering, 2003, 28(3): 303–314. DOI: 10.1016/S0734-743X(02)00022-2.
    [16] DOROGOY A, RITTEL D. Dynamic large strain characterization of tantalum using shear-compression and shear-tension testing [J]. Mechanics of Materials, 2017, 112: 143–153. DOI: 10.1016/j.mechmat.2017.06.003.
    [17] SU Y S, LI S X, YANG G N, et al. Shear instability and considerably localized melting in quasi-static compression [J]. Materials Characterization, 2020, 160: 110081. DOI: 10.1016/j.matchar.2019.110081.
    [18] ROGERS H C. Adiabatic plastic deformation [J]. Annual Review of Materials Science, 1979, 9: 283–311. DOI: 10.1146/annurev.ms.09.080179.001435.
    [19] LI N, WANG Y D, PENG R L, et al. Localized amorphism after high-strain-rate deformation in TWIP steel [J]. Acta Materialia, 2011, 59(16): 6369–6377. DOI: 10.1016/j.actamat.2011.06.048.
    [20] OSOVSKI S, RITTEL D, LANDAU P, et al. Microstructural effects on adiabatic shear band formation [J]. Scripta Materialia, 2012, 66(1): 9–12. DOI: 10.1016/j.scriptamat.2011.09.014.
    [21] RITTEL D, ZHANG L H, OSOVSKI S. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 96–114. DOI: 10.1016/j.jmps.2017.06.016.
    [22] SAKAI T, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Progress in Materials Science, 2014, 60: 130–207. DOI: 10.1016/j.pmatsci.2013.09.002.
    [23] XIE H X, MA T, YU T, et al. Body-centered-cubic to face-centered-cubic phase transformation of iron under compressive loading along [100] direction [J]. Materials Today Communications, 2021, 26: 101961. DOI: 10.1016/j.mtcomm.2020.101961.
    [24] IVANISENKO Y, MACLAREN I, SAUVAGE X, et al. Shear-induced αγ transformation in nanoscale Fe-C composite [J]. Acta Materialia, 2006, 54(6): 1659–1669. DOI: 10.1016/j.actamat.2005.11.034.
    [25] JIANG G H, LI S X, PU J B, et al. Phase transformation in the subsurface of case carbonitrided bearing steels under rolling contact fatigue [J]. Tribology International, 2022, 169: 107468. DOI: 10.1016/j.triboint.2022.107468.
    [26] MEYER L W, STASKEWITSCH E, BURBLIES A. Adiabatic shear failure under biaxial dynamic compression/shear loading [J]. Mechanics of Materials, 1994, 17(2/3): 203–214. DOI: 10.1016/0167-6636(94)90060-4.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  68
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2023-01-05
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回