复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性

时圣波 王韧之 唐佳宾 甘云丹 袁建飞 陈勇

时圣波, 王韧之, 唐佳宾, 甘云丹, 袁建飞, 陈勇. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性[J]. 爆炸与冲击, 2023, 43(6): 062201. doi: 10.11883/bzycj-2022-0430
引用本文: 时圣波, 王韧之, 唐佳宾, 甘云丹, 袁建飞, 陈勇. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性[J]. 爆炸与冲击, 2023, 43(6): 062201. doi: 10.11883/bzycj-2022-0430
SHI Shengbo, WANG Renzhi, TANG Jiabin, GAN Yundan, YUAN Jianfei, CHEN Yong. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings[J]. Explosion And Shock Waves, 2023, 43(6): 062201. doi: 10.11883/bzycj-2022-0430
Citation: SHI Shengbo, WANG Renzhi, TANG Jiabin, GAN Yundan, YUAN Jianfei, CHEN Yong. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings[J]. Explosion And Shock Waves, 2023, 43(6): 062201. doi: 10.11883/bzycj-2022-0430

复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性

doi: 10.11883/bzycj-2022-0430
基金项目: 国家自然科学基金(12172296);上海市空间飞行器机构重点实验室基金(2021XGD)
详细信息
    作者简介:

    时圣波(1985- ),男,博士,副教授,shishengbo@nwpu.edu.cn

  • 中图分类号: O389

Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings

  • 摘要: 基于碳纤维增强复合材料面板与金属芯层,设计出金字塔型复合点阵夹芯结构。利用地面爆炸冲击实验,研究复合点阵结构在强爆炸载荷作用下的损伤机理和失效模式。基于材料的细观损伤机理,构建复合材料面板的三维渐进损伤模型和金属芯层的Johnson-Cook损伤模型,并结合有限元方法发展了复合点阵结构的爆炸冲击响应预报模型。开展了不同载荷工况下结构的动态响应特性分析,结合实验测试结果分析了结构抗爆性能的主要影响因素。研究表明,在近距离强爆炸载荷作用下,复合点阵结构整体构型基本保持完好,仅局部出现失效现象,主要失效形式为边缘区域面芯脱粘和局部芯层杆件断裂,但结构整体上仍具有较好的承载能力。探讨了考虑多种载荷条件和结构参数相关变量的毁伤函数,给出了结构的可行设计域。研究结果可为装备关键部件轻量化/抗爆设计提供参考。
  • 图  1  复合点阵夹芯结构示意图及设计参数

    Figure  1.  Schematic diagram and design parameters of a composite lattice sandwich structure

    图  2  复合材料金属混杂点阵结构实物图

    Figure  2.  Composite/metal hybrid lattice structure specimen

    图  3  爆炸实验场地布置

    Figure  3.  Layout of the explosion experimental site

    图  4  爆炸冲击波超压脉冲曲线

    Figure  4.  Pressure pulse curves of explosion shock waves

    图  5  复合点阵结构的爆炸冲击响应有限元分析模型

    Figure  5.  The finite element model for predicting explosion shock response of composite lattice structure

    图  6  复合点阵结构爆炸冲击实验后的样件照片及局部失效情况

    Figure  6.  Photographs and local failures of composite lattice structure specimens after explosion shock experiments

    图  7  复合点阵夹芯结构爆炸冲击载荷下的位移变化云图

    Figure  7.  Strain response of composite lattice sandwich structure under explosion shock loadings

    图  8  复合点阵夹芯结构爆炸冲击载荷下的位移变化曲线

    Figure  8.  Strain response curves of composite lattice sandwich structure under explosion shock loadings

    图  9  复合点阵夹芯结构爆炸冲击载荷下的应力变化规律

    Figure  9.  Stress response of composite lattice sandwich structure under explosion shock loadings

    图  10  复合点阵夹芯结构上、下面板单个铺层的应力变化规律

    Figure  10.  Cloud maps of stress distribution between layers of composite lattice structure panels

    图  11  复合点阵夹芯结构爆炸冲击过程中的能量转化关系

    Figure  11.  Energy absorption curves of composite lattice sandwich structure exposed to explosion loadings

    图  12  复合点阵夹芯结构在爆炸冲击载荷下的失效模式

    Figure  12.  Failure modes of composite lattice sandwich structure under explosion loadings

    图  13  复合点阵夹芯结构不同载荷条件下的结构响应

    Figure  13.  Structural responses of composite lattice sandwich structures under different loadings

    图  14  复合点阵结构的二元毁伤函数图像

    Figure  14.  Damage function related to explosive weight and explosion distance for the composite lattice structure

    表  1  金字塔型芯子代表性单胞主要设计参数

    Table  1.   Main design parameters of representative structure cell of pyramidal truss core

    h/mmp/mmt1/mms/mmt2/mmθ/ (°)ha/mmhb/mm
    1535.751.5981.54531.5
    下载: 导出CSV

    表  2  碳/环氧复合材料的基本材料性能参数

    Table  2.   Mechanical properties of carbon/epoxy composite materials

    密度/(kg·m−3)拉压模量/GPa泊松比剪切模量/GPa拉伸强度/MPa压缩强度/MPa面内剪切强度/MPa层间剪切强度/MPa
    1600123 (0°)0.41 (0°)4.81400 (0°)850 (0°)6016
    8.3 (90°)0.26 (90°)18 (90°)96 (90°)
    注:0°是指力作用在纤维方向;90°是指力作用在垂直纤维方向。
    下载: 导出CSV

    表  3  爆炸实验载荷工况

    Table  3.   Loading conditions of explosion experiments

    工况TNT当量/g爆炸距离/m比例距离/(m·kg−1/3)
    1 9001.201.24
    210001.861.86
    315001.201.05
    430001.200.83
    下载: 导出CSV

    表  4  复合点阵夹芯结构不同工况条件下的毁伤情况

    Table  4.   Damage of composite lattice structures under different loading conditions

    芯子构型爆炸距离L/mmTNT当量q/g最大挠度X/mm
    金字塔芯子 800 90016.58
    1 200 900 8.38
    1 50012.14
    3 00026.08
    下载: 导出CSV
  • [1] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on damage and protection of large ships under underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [2] 张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.

    ZHANG J, HUANG H J, WANG J P, et al. Load calculation of explosive driven explosive tube [J]. Equipment Environment Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
    [3] 马福临, 杨娜娜, 赵天佑, 等. 冲击波-破片群联合作用下舰船复合材料结构近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.

    MA F L, YANG N N, ZHAO T Y, et al. Near field dynamic damage simulation of ship composite structure under the combined action of shock wave and fragment group [J]. Explosion and Shock Waves, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.
    [4] 王志鹏, 李海波, 韦冰峰, 等. 嵌锁式CFRP方形蜂窝夹芯梁低速冲击响应及失效机理[J] [J]. 爆炸与冲击, 2022, 42(7): 073102. DOI: 10.11883/bzycj-2021-0525.

    WANG Z P, LI H B, WEI B F, et al. Low-velocity impact response and failure mechanism of CFRP sandwich beams with a square honeycomb core fabricated by the interlocking method [J]. Explosion and Shock Waves, 2022, 42(7): 073102. DOI: 10.11883/bzycj-2021-0525.
    [5] 陈东, 吴永鹏, 李忠盛, 等. 轻质高强多功能点阵夹层结构研究进展 [J]. 装备环境工程, 2020, 17(4): 77–84. DOI: 10.7643/issn.1672-9242.2020.04.013.

    CHEN D, WU Y P, LI Z S, et al. Research progress of light, high strength and multi-function lattice sandwich structures [J]. Equipment Environment Engineering, 2020, 17(4): 77–84. DOI: 10.7643/issn.1672-9242.2020.04.013.
    [6] 孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究 [J]. 爆炸与冲击, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.

    SUN X W, TAO X X, WANG X H, et al. Study on anti-explosion characteristics and optimum design of honeycomb material with negative Poisson’s ratio [J]. Explosion and Shock Waves, 2020, 40(9): 095101. DOI: 10.11883/bzycj-2020-0011.
    [7] 吴艳青, 刘彦, 黄风雷, 等. 爆炸力学理论及应用[M]. 1版. 北京: 北京理工大学出版社, 2021: 1–20.
    [8] 程帅, 刘文祥, 童念雪, 等. 爆炸载荷下飞机典型加筋结构毁伤特性 [J]. 爆炸与冲击, 2021, 41(1): 013302. DOI: 10.11883/bzycj-2020-0077.

    CHENG S, LIU W X, TONG N X, et al. Damage characteristics of typical stiffened aircraft structures under explosive loads [J]. Explosion and Shock Waves, 2021, 41(1): 013302. DOI: 10.11883/bzycj-2020-0077.
    [9] WU Q Q, GAO Y, XIONG J. Quasi-static mechanical properties of composite lattice sandwich structures with enhanced face panels [J]. European Journal of Mechanics: A/Solids, 2023, 97: 104808. DOI: 10.1016/j.euromechsol.2022.104808.
    [10] EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals [J]. Progress in Materials Science, 2001, 46(3/4): 309–327. DOI: 10.1016/S0079-6425(00)00016-5.
    [11] LI X, WANG Z H, ZHU F, et al. Response of aluminium corrugated sandwich panels under air blast loadings: experiment and numerical simulation [J]. International Journal of Impact Engineering, 2014, 65: 79–88. DOI: 10.1016/j.ijimpeng.2013.11.002.
    [12] QI C, YANG S, YANG L J, et al. Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels [J]. Composite Structures, 2013, 105: 45–57. DOI: 10.1016/j.compstruct.2013.04.043.
    [13] 王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.

    WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.
    [14] YUNGWIRTH C J, WADLEY H N G, O’CONNOR J H, et al. Impact response of sandwich plates with a pyramidal lattice core [J]. International Journal of Impact Engineering, 2008, 35(8): 920–936. DOI: 10.1016/j.ijimpeng.2007.07.001.
    [15] WADLEY H, DHARMASENA K, CHEN Y, et al. Compressive response of multilayered pyramidal lattices during underwater shock loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1102–1114. DOI: 10.1016/j.ijimpeng.2007.06.009.
    [16] DHARMASENA K P, WADLEY H N G, LIU T, et al. The dynamic response of edge clamped plates loaded by spherically expanding sand shells [J]. International Journal of Impact Engineering, 2013, 62: 182–195. DOI: 10.1016/j.ijimpeng.2013.06.012.
    [17] 亓昌, 郝鹏程, 舒剑, 等. 金字塔型点阵材料夹芯板抗爆性能仿真与优化 [J]. 振动与冲击, 2019, 38(16): 245–252. DOI: 10.13465/j.cnki.jvs.2019.16.035.

    QI C, HAO P C, SHU J, et al. Simulation and optimization for blast-resistant performances of pyramidal lattice cored sandwich panels [J]. Journal of Vibration and Shock, 2019, 38(16): 245–252. DOI: 10.13465/j.cnki.jvs.2019.16.035.
    [18] 彭航. 侵爆战斗部对典型建筑物内爆毁伤效应与评估方法研究[D]. 南京: 南京理工大学, 2021. DOI: 10.27241/d.cnki.gnjgu.2021.000774.

    PENG H. Study on damage effect and evaluation method of penetration warhead on typical building internal explosion [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2021. DOI: 10.27241/d.cnki.gnjgu.2021.000774.
    [19] 冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法 [J]. 高压物理学报, 2019, 33(4): 045101. DOI: 10.11858/gywlxb.20180687.

    FENG X W, LU YG, LI Y Z. Damage effect evaluation method of aircraft target under explosion shock wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045101. DOI: 10.11858/gywlxb.20180687.
    [20] HAN L, HAN Q, GE Y X, et al. Vulnerability assessment of combat aircraft to blast loading [J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(2): 604–615. DOI: 10.1177/0954410017740162.
    [21] 胡榕,姜春兰,卢广照,等. 机场跑道内爆炸毁伤效应及工程化函数模型 [J]. 兵工学报, 2023, 44(4): 929–939. DOI: 10.12382/bgxb.2022.1220.

    HU R, JIANG C L, LU G Z, et al. Explosion damage effect and engineering function model in airport runway [J]. Acta Armamentarii, 2023, 44(4): 929–939. DOI: 10.12382/bgxb.2022.1220.
    [22] WEI X Y, XIONG J, WANG J, et al. New advances in fiber-reinforced composite honeycomb materials [J]. Science China Technological Sciences, 2020, 63(8): 1348–1370. DOI: 10.1007/s11431-020-1650-9.
    [23] LI Z B, GAO Y, WEI X Y, et al. Fabrication and failure mechanisms of all-composite honeycomb sandwich cylinder under the axial compression [J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107075. DOI: 10.1016/j.compositesa.2022.107075.
    [24] ZHAO H N, FANG H Y, ZHAO X H. Experimental and numerical investigation on dynamic behaviors of glass fiber reinforced polymer plates under explosion loadings [J]. International Journal of Impact Engineering, 2023, 171: 104362. DOI: 10.1016/j.ijimpeng.2022.104362.
    [25] 李伟, 王鹏, 李佳, 等. 高速冲击下多胞材料细观结构中波传播规律 [J]. 装备环境工程, 2021, 18(5): 87–93. DOI: 10.7643/issn.1672-9242.2021.05.013.

    LI W, WANG P, LI J, et al. Wave propagation in mesostructure of multicellular materials under high speed impact [J]. Equipment Environment Engineering, 2021, 18(5): 87–93. DOI: 10.7643/issn.1672-9242.2021.05.013.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  102
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-07
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回