点火能量对单基发射药燃烧爆炸特性的影响

亢澎霖 李小东 刘文杰 孙彦涛 关云飞 马智刚 赵子文

亢澎霖, 李小东, 刘文杰, 孙彦涛, 关云飞, 马智刚, 赵子文. 点火能量对单基发射药燃烧爆炸特性的影响[J]. 爆炸与冲击, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452
引用本文: 亢澎霖, 李小东, 刘文杰, 孙彦涛, 关云飞, 马智刚, 赵子文. 点火能量对单基发射药燃烧爆炸特性的影响[J]. 爆炸与冲击, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452
KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452
Citation: KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452

点火能量对单基发射药燃烧爆炸特性的影响

doi: 10.11883/bzycj-2022-0452
详细信息
    作者简介:

    亢澎霖(1997-),男,硕士研究生,446060341@qq.com

    通讯作者:

    李小东(1978-),男,教授,博士生导师,lixd78@126.com

  • 中图分类号: O383; TJ5

Influence of the ignition energy on combustion and explosion characteristics of single-base propellant

  • 摘要: 为了探究点火能量对单基发射药燃烧爆炸特性的影响,自主设计了发射药燃烧爆炸试验装置。使用黑火药对单基发射药点火,开展燃烧爆炸实验。通过对铝制鉴定板及约束钢筒内壁烧蚀痕迹的分析,获得不同点火能量对单基发射药燃烧爆炸特性的影响。结果表明,点火初期约束钢筒内发射药燃烧反应不完全,反应剧烈程度较弱;随着距点火端距离增大,发射药燃烧反应剧烈程度变强,但此时反应仍不完全;在约束钢筒末端发射药反应完全。在4.0、5.0和8.0 kJ点火能量下,发射药点火初期到反应剧烈程度迅速增强的成长距离分别为54.66、53.95和19.38 cm。20.0 kJ能量点火初期发射药反应剧烈程度较强,传播至末端时发射药发生爆燃反应,鉴定板产生明显凹痕;发射药在约束钢筒内不同位置分别发生了缓慢燃烧、快速燃烧和爆燃。
  • 图  1  单基发射药燃烧爆炸实验系统

    Figure  1.  Combustion and explosion experiment system of single-base propellant

    图  2  单基发射药燃烧爆炸装置

    Figure  2.  Single-base propellant combustion and explosion device

    图  3  黑火药包及点火具

    Figure  3.  Black powder bag and ignition device

    图  4  单基发射药燃烧爆炸鉴定板烧蚀痕迹直径

    Figure  4.  Diameters of ablation traces on the combustion and explosion witness plate of the single-base propellant

    图  5  不同点火能量条件下烧蚀痕迹直径曲线

    Figure  5.  Ablation trace diameter curves under different ignition energy conditions

    图  6  单基发射药不同反应剧烈程度湍流扩散角对比

    Figure  6.  Comparison of turbulent flow spread angle of single-base propellant with different reaction intensity

    图  7  单基发射药燃烧爆炸鉴定板烧蚀痕迹RGB和值

    Figure  7.  RGB summation of the ablation traces on the witness plate by the combustion of the single-base propellant

    图  8  不同点火能量条件下烧蚀痕迹RGB和值曲线

    Figure  8.  RGB summation curves of ablation traces under different ignition energy conditions

    图  9  20 kJ点火能量对单基发射药燃烧爆炸鉴定板实验结果

    Figure  9.  Test results of 20 kJ ignition energy on combustion and explosion witness plate of single base-propellant

    图  10  约束钢筒内壁燃烧痕迹

    Figure  10.  Trace of the combustion wall in confined steel cylinder

    图  11  20 kJ点火能量下发射药燃烧爆炸过程示意图

    Figure  11.  Schematic diagram of the propellant combustion and explosion process under 20 kJ energy ignition

    图  12  20 kJ点火能量下约束钢筒内不同位置药柱燃烧过程

    Figure  12.  Combustion process of the propellant grain at different positions in the confined steel cylinder under 20 kJ energy ignition

    表  1  不同点火能量条件下黑火药装药质量及长度

    Table  1.   Quality and length of black powder charge under different ignition energy conditions

    点火能量/kJ黑火药装药质量/g黑火药装药长度/cm
    4.01.395.34
    5.01.726.05
    8.02.7710.62
    20.06.9126.37
    下载: 导出CSV

    表  2  不同点火能量条件下断裂痕迹出现位置

    Table  2.   Location of fracture traces under different ignition energy conditions

    点火能量/
    kJ
    断面痕迹出现
    位置/mm
    断面痕迹出现位置与
    点火位置距离/mm
    4.0560.0506.6
    5.0510.0449.5
    8.0560.0453.8
    20.0 465.0201.3
    下载: 导出CSV
  • [1] BECKSTEAD M W, PUDUPPAKKAM K, THAKRE P, et al. Modeling of combustion and ignition of solid-propellant ingredients [J]. Progress in Energy and Combustion Science, 2007, 33(6): 497–551. DOI: 10.1016/j.pecs.2007.02.003.
    [2] AMBEKAR A, KIM M, LEE W H, et al. Characterization of display pyrotechnic propellants: burning rate [J]. Applied Thermal Engineering, 2017, 121: 761–767. DOI: 10.1016/j.applthermaleng.2017.04.097.
    [3] 王艳平, 曾丹, 张同来, 等. 发射药燃烧热辐射传播规律 [J]. 爆炸与冲击, 2018, 38(1): 212–216. DOI: 10.11883/bzycj-2016-0152.

    WANG Y P, ZENG D, ZHANG T L, et al. Heat radiation propagation law of propellant combustion [J]. Explosion and Shock Waves, 2018, 38(1): 212–216. DOI: 10.11883/bzycj-2016-0152.
    [4] 廖静林, 江劲勇, 路桂娥, 等. 发射药的火焰燃烧温度计算与测定分析 [J]. 含能材料, 2011, 19(1): 74–77. DOI: 10.3969/j.issn.1006-9941.2011.01.017.

    LIAO J L, JIANG J Y, LU G E, et al. Calculation and measurement analysis of propellant burning temperature [J]. Chinese Journal of Energetic Materials, 2011, 19(1): 74–77. DOI: 10.3969/j.issn.1006-9941.2011.01.017.
    [5] 高金明, 曾丹, 孙磊, 等. 新型发射药爆炸TNT当量系数的实验研究 [J]. 爆炸与冲击, 2021, 41(10): 102101. DOI: 10.11883/bzycj-2020-0432.

    GAO J M, ZENG D, SUN L, et al. Experimental study on TNT equivalent coefficients for two new kinds of propellants [J]. Explosion and Shock Waves, 2021, 41(10): 102101. DOI: 10.11883/bzycj-2020-0432.
    [6] YAMAN H, ÇELIK V, DEĞIRMENCI E. Experimental investigation of the factors affecting the burning rate of solid rocket propellants [J]. Fuel, 2014, 115: 794–803. DOI: 10.1016/j.fuel.2013.05.033.
    [7] PILLAI A G S, SANGHAVI R R, DAYANANDAN C R, et al. Studies on RDX particle size in LOVA gun propellant formulations [J]. Propellants, Explosives, Pyrotechnics, 2001, 26(5): 226–228. DOI: 10.1002/1521-4087(200112)26:5<226::AID-PREP226>3.0.CO;2-9.
    [8] WANG B B, LIAO X, DELUCA L T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants [J]. Defence Technology, 2022, 18(7): 1247–1256. DOI: 10.1016/j.dt.2021.05.009.
    [9] 张丽娜, 王英博, 南风强, 等. 双层包覆对超多孔发射药燃烧性能的影响 [J]. 含能材料, 2020, 28(6): 498–503. DOI: 10.11943/CJEM2019197.

    ZHANG L N, WANG Y B, NAN F Q, et al. Effect of double-layer coating on combustion performance of super-porous propellant [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 498–503. DOI: 10.11943/CJEM2019197.
    [10] 杨建兴, 杨伟涛, 马方生, 等. RDX粒度对硝胺发射药力学性能及燃烧性能的影响 [J]. 含能材料, 2017, 25(9): 706–711. DOI: 10.11943/j.issn.1006-9941.2017.09.001.

    YANG J X, YANG W T, MA F S, et al. Effect of RDX particle size on the mechanical and combustion properties of nitramine gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(9): 706–711. DOI: 10.11943/j.issn.1006-9941.2017.09.001.
    [11] DAMSE R S, SINGH A, SINGH H. High energy propellants for advanced gun ammunition based on RDX, GAP and TAGN compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(1): 52–60. DOI: 10.1002/prep.200700007.
    [12] LIANG D L, LIU J Z, CHEN B H, et al. Improvement in energy release properties of boron-based propellant by oxidant coating [J]. Thermochimica Acta, 2016, 638: 58–68. DOI: 10.1016/j.tca.2016.06.017.
    [13] 张邹邹, 何昌辉, 张衡, 等. NC体系发射药烤燃点火的响应特性 [J]. 爆破器材, 2021, 50(1): 38–43. DOI: 10.3969/j.issn.1001-8352.2021.01.007.

    ZHANG Z Z, HE C H, ZHANG H, et al. Ignition response characteristics of NC propellants under cook-off test [J]. Explosive Materials, 2021, 50(1): 38–43. DOI: 10.3969/j.issn.1001-8352.2021.01.007.
    [14] KAKAMI A, HIYAMIZU R, SHUZENJI K, et al. Laser-assisted combustion of solid propellants at low pressures [J]. Journal of Propulsion and Power, 2008, 24(6): 1355–1360. DOI: 10.2514/1.36458.
    [15] 刘强, 张玉成, 张江波, 等. 等离子体点火对高能硝胺发射药点火性能影响研究 [J]. 火工品, 2014(4): 28–32. DOI: 10.3969/j.issn.1003-1480.2014.04.008.

    LIU Q, ZHANG Y C, ZHANG J B, et al. The influence of plasma ignition on the ignition performance of high-energy nitramine gun propellant [J]. Initiators and Pyrotechnics, 2014(4): 28–32. DOI: 10.3969/j.issn.1003-1480.2014.04.008.
    [16] 肖正刚, 应三九, 周伟良, 等. 低敏感高能发射药等离子体点火研究动态 [J]. 含能材料, 2008, 16(5): 633–638. DOI: 10.3969/j.issn.1006-9941.2008.05.041.

    XIAO Z G, YING S J, ZHOU W L, et al. Progress in plasma ignition of insensitive high energy propellants [J]. Chinese Journal of Energetic Materials, 2008, 16(5): 633–638. DOI: 10.3969/j.issn.1006-9941.2008.05.041.
    [17] LI X W, LI R, JIA S L, et al. Study on the characteristics of different plasma ignition schemes [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 214–219. DOI: 10.1109/TPS.2012.2226061.
    [18] LI J Q, LITZINGER T A, THYNELL S T. Plasma ignition and combustion of JA2 propellant [J]. Journal of Propulsion and Power, 2005, 21(1): 44–53. DOI: 10.2514/1.5866.
    [19] 张江波, 肖霞, 赵煜华, 等. 铜丝钛丝电爆炸对硝胺发射药的点火特性 [J]. 火工品, 2022(5): 24–29. DOI: 10.3969/j.issn.1003-1480.2022.05.006.

    ZHANG J B, XIAO X, ZHAO Y H, et al. Ignition characteristics of nitramine propellant by copper wire and titanium wire electric explosion [J]. Initiators & Pyrotechnics, 2022(5): 24–29. DOI: 10.3969/j.issn.1003-1480.2022.05.006.
    [20] KOLECZKO A, EHRHARDT W, KELZENBERG S, et al. Plasma ignition and combustion [J]. Propellants, Explosives, Pyrotechnics, 2001, 26(2): 75–83. DOI: 10.1002/1521-4087(200104)26:2<75::AID-PREP75>3.0.CO;2-Q.
    [21] 陈伟, 郑宇, 王晓鸣, 等. 点火药药量对爆炸能量输出影响的试验研究 [J]. 爆破器材, 2013, 42(4): 10–13. DOI: 10.3969/j.issn.1001-8352.2013.04.003.

    CHEN W, ZHENG Y, WANG X M, et al. Experimental research on the effect of ignition composition quantity on the explosion energy generation [J]. Explosive Materials, 2013, 42(4): 10–13. DOI: 10.3969/j.issn.1001-8352.2013.04.003.
    [22] 晁李金, 吕秉峰. 点火药量对发射药燃烧性能的影响 [J]. 兵器装备工程学报, 2016, 37(3): 126–128. DOI: 10.11809/scbgxb2016.03.030.

    CHAO L J, LYU B F. Effect of changing ignition dosages on combustion properties of propellants [J]. Journal of Ordnance Equipment Engineering, 2016, 37(3): 126–128. DOI: 10.11809/scbgxb2016.03.030.
    [23] 赵宝明, 李先, 刘来东, 等. 适用于RGD7A基三层发射药的点火药 [J]. 爆破器材, 2015, 44(3): 51–54. DOI: 10.3969/j.issn.1001-8352.2015.03.012.

    ZHAO B M, LI X, LIU L D, et al. Ignition powders of the three layers gun propellant based on RGD7A [J]. Explosive Materials, 2015, 44(3): 51–54. DOI: 10.3969/j.issn.1001-8352.2015.03.012.
    [24] 陈晓明, 赵瑛, 宋长文, 等. 发射药燃烧转爆轰的试验研究 [J]. 火炸药学报, 2012, 35(4): 69–72. DOI: 10.3969/j.issn.1007-7812.2012.04.018.

    CHEN X M, ZHAO Y, SONG C W, et al. Experimental study on deflagration to detonation transition of gun propellants [J]. Chinese Journal of Explosives & Propellants, 2012, 35(4): 69–72. DOI: 10.3969/j.issn.1007-7812.2012.04.018.
    [25] 周浩然. 黑火药爆炸反应方程及其爆炸热化学指标 [J]. 武汉钢铁学院学报, 1981(2): 50–58.

    ZHOU H R. Explosive reaction equation of black powder and its explosive thermochemical index [J]. Journal of Wuhan University of Science and Technology, 1981(2): 50–58.
    [26] VERMA M K. Variable energy flux in turbulence [J]. Journal of Physics A: Mathematical and Theoretical, 2022, 55(1): 013002. DOI: 10.1088/1751-8121/ac354e.
    [27] 李伟锋, 刘海峰, 龚欣. 工程流体力学 [M]. 2版. 上海: 华东理工大学出版社, 2016: 48–49.

    LI W F, LIU H F, GONG X. Engineering fluid mechanics [M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2016: 48–49.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  66
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2023-03-17
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回