高温高压下C3H8/C2H4在空气中的爆炸上限

陈昇 宁也 何萌 祁畅 王亚磊 闫兴清 喻健良

陈昇, 宁也, 何萌, 祁畅, 王亚磊, 闫兴清, 喻健良. 高温高压下C3H8/C2H4在空气中的爆炸上限[J]. 爆炸与冲击, 2023, 43(6): 065401. doi: 10.11883/bzycj-2022-0475
引用本文: 陈昇, 宁也, 何萌, 祁畅, 王亚磊, 闫兴清, 喻健良. 高温高压下C3H8/C2H4在空气中的爆炸上限[J]. 爆炸与冲击, 2023, 43(6): 065401. doi: 10.11883/bzycj-2022-0475
CHEN Sheng, NING Ye, HE Meng, QI Chang, WANG Yalei, YAN Xingqing, YU Jianliang. The upper explosion limit of C3H8/C2H4 mixtures in air at high temperatures and pressures[J]. Explosion And Shock Waves, 2023, 43(6): 065401. doi: 10.11883/bzycj-2022-0475
Citation: CHEN Sheng, NING Ye, HE Meng, QI Chang, WANG Yalei, YAN Xingqing, YU Jianliang. The upper explosion limit of C3H8/C2H4 mixtures in air at high temperatures and pressures[J]. Explosion And Shock Waves, 2023, 43(6): 065401. doi: 10.11883/bzycj-2022-0475

高温高压下C3H8/C2H4在空气中的爆炸上限

doi: 10.11883/bzycj-2022-0475
基金项目: 国家重点研发计划(2022YFC3004505);国家自然科学基金(52174167);中国特种设备检测研究院二级学科建设项目(2021XKTD004)
详细信息
    作者简介:

    陈 昇(1987- ),男,博士,高级工程师,chensheng_csei@163.com

    通讯作者:

    喻健良(1963- ),男,博士,教授,yujianliang@dlut.edu.cn

  • 中图分类号: O389; X932

The upper explosion limit of C3H8/C2H4 mixtures in air at high temperatures and pressures

  • 摘要: 为了防控高温高压工艺流程中可燃混合气体潜在的爆炸风险,利用自行搭建的20 L球形爆炸特性实验装置,测试了初始温度20~200 ℃、初始压力0.1~1.5 MPa下C3H8/C2H4混合气体在空气中的爆炸上限,分析了温度、压力和C2H4体积分数对混合气体爆炸上限的影响。结果表明,随着温度和压力的升高,C3H8/C2H4混合气体爆炸上限升高。当初始压力高于0.3 MPa时,随着C2H4体积分数的增加,爆炸上限的上升速率明显降低。随着C2H4体积分数的增加,高温和高压下爆炸上限的提升幅度和速率比常温常压下更高。温度和压力的协同作用对爆炸上限的影响远大于二者单独作用的影响之和,即高温和高压协同作用下,C3H8/C2H4混合气体具有更高的爆炸风险,且随着C2H4体积分数的增加,爆炸风险会进一步提升。分别拟合得到了爆炸上限与温度参数、爆炸上限与压力参数以及爆炸上限与温度和压力双参数下的函数关系。
  • 图  1  高温高压下20 L球形实验装置

    Figure  1.  20 L spherical experimental device under high temperatures and pressures

    图  2  爆炸判定准则

    Figure  2.  Explosion determination method

    图  3  高温下不同比例C3H8/C2H4的爆炸上限

    Figure  3.  The upper explosion limits of C3H8/C2H4 mixtures at high temperatures with different proportions

    图  4  初始温度对火焰传播速度的影响[24]

    Figure  4.  Effect of initial temperature on flame propagation velocity[24]

    图  5  温度与3种气体火焰传播速度的关系[24]

    Figure  5.  Relations between temperature and flame propagation velocity of three gases[24]

    图  6  温度、C2H4体积分数对C3H8/C2H4爆炸上限的影响

    Figure  6.  Influence of temperature and volume fraction of C2H4 on the upper explosion limits of C3H8/C2H4 mixtures

    图  7  高压下不同比例C3H8/C2H4的爆炸上限

    Figure  7.  The upper explosion limits of C3H8/C2H4 mixtures at high pressures with different proportions

    图  8  压力对火焰传播速度的影响

    Figure  8.  Effect of initial pressure on flame propagation velocity

    图  9  爆炸后生成的大量产物

    Figure  9.  A large number of products formed after explosion

    图  10  压力、C2H4体积分数对C3H8/C2H4爆炸上限的影响

    Figure  10.  Influence of pressure and volume fraction of C2H4 on the upper explosion limits of C3H8/C2H4 mixtures

    图  11  高温高压下C3H8/C2H4爆炸上限提升幅度

    Figure  11.  Increase in the upper explosion limit of C3H8/C2H4 at high temperature and pressure

    图  12  温度、压力协同作用对不同比例C3H8/C2H4爆炸上限的影响

    Figure  12.  Influence of temperature and pressure on the upper explosion limits of C3H8/C2H4 mixtures with different proportions

    表  1  气体爆炸上限

    Table  1.   The upper explosion limits of gases

    实验工况C3H8体积分数/%C2H4体积分数/%
    本实验文献[4]本实验文献[4]
    初始温度20 ℃,初始压力0.1 MPa10.910.435.934.7
    初始温度20 ℃,初始压力0.3 MPa12.912.645.743.5
    初始温度200 ℃,初始压力0.1 MPa12.1~12.944.1~44.4
    下载: 导出CSV

    表  2  式(1)中的拟合参数

    Table  2.   Dimensionless fitting coefficients of Eq. (1)

    ${ {U_{0}} }$${A_{01}}$${B_{01}}$${B_{02}}$${ {C_{1}} }$${A_{1}}$${A_{2}}$${B_{1}}$${B_{2}}$${C_{2}}$R2
    17.13720.45811392.4097390.43131.3931.922−0.0011300.26−767.583−1.0970.99
    下载: 导出CSV

    表  3  式(2)中的拟合参数

    Table  3.   Dimensionless fitting coefficients of Eq. (2)

    ${{U_{0}^\prime}} $${A_{01}^\prime} $${B_{01}^\prime} $${B_{02}^\prime} $${{C_{1}^\prime}} $${{A_{1}^\prime}} $${{A_{2}^\prime}} $${{B_{1}^\prime}} $${{B_{2}^\prime}} $${{C_{2}^\prime}} $R2
    9.04317.596−5.211−4.2740.3460.372−0.054−1.4950.4950.0020.99
    下载: 导出CSV

    表  4  式(3)~(4)中的拟合参数

    Table  4.   Dimensionless fitting coefficients of Eqs. (3)−(4)

    $\varphi $/%ABCDEFR2
    016.493932.562 46×1042.101082.532021.031 61×1040.98
    25−23.80212−0.016011.5972739.676302.414520.018120.99
    5027.823290.006621.542237.826590.148910.003880.99
    7539.826270.006691.529338.211950.040680.002300.99
    10052.121250.038111.176435.65889−0.045210.007290.99
    下载: 导出CSV
  • [1] BOUNACEUR R, GLAUDE P A, SIRJEAN B, et al. Prediction of flammability limits of gas mixtures containing inert gases under variable temperature and pressure conditions [C] // ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte, France, 2017.
    [2] LIAW H J, CHEN K Y. A model for predicting temperature effect on flammability limits [J]. Fuel, 2016, 178: 179–187. DOI: 10.1016/j.fuel.2016.03.034.
    [3] VAN DEN SCHOOR F, HERMANNS R T E, VAN OIJEN J A, et al. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures [J]. Journal of Hazardous Materials, 2008, 150(3): 573–581. DOI: 10.1016/j.jhazmat.2007.05.006.
    [4] VAN DEN SCHOOR F, VERPLAETSEN F. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures [J]. Journal of Hazardous Materials, 2006, 128(1): 1–9. DOI: 10.1016/j.jhazmat.2005.06.043.
    [5] 李刚, 李玉峰, 苑春苗. 高温和高压下CBM的爆炸极限 [J]. 东北大学学报(自然科学版), 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.

    LI G, LI Y F, YUAN C M. Explosion limits of CBM at elevated pressure and temperature [J]. Journal of Northeastern University Natural Science, 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.
    [6] HUANG L, LI Z, WANG Y, et al. Experimental assessment on the explosion pressure of CH4-air mixtures at flammability limits under high pressure and temperature conditions [J]. Fuel, 2021, 299: 120868. DOI: 10.1016/j.fuel.2021.120868.
    [7] WANG Y L, QI C, NING Y, et al. Experimental determination of the lower flammability limit and limiting oxygen concentration of propanal/air mixtures under elevated temperatures and pressures [J]. Fuel, 2022, 326: 124882. DOI: 10.1016/j.fuel.2022.124882.
    [8] WANG Y L, YU J L, YAN X Q, et al. Study on the explosion characteristics of propanal/air mixtures at elevated pressures [J]. Fuel, 2022, 328: 125288. DOI: 10.1016/j.fuel.2022.125288.
    [9] YU X Z, YU J L, JI W T, et al. A research on flammability limits of the refrigerant HCFC-22/air mixtures at elevated pressures [J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 89–93. DOI: 10.1016/j.jlp.2019.05.022.
    [10] LUO Z M, SU B, WANG T, et al. Effects of propane on the flammability limits and chemical kinetics of methane-air explosions [J]. Combustion Science and Technology, 2020, 192(9): 1785–1801. DOI: 10.1080/00102202.2019.1625041.
    [11] TONG M, WU G, HAO J, et al. Explosion limits for combustible gases [J]. Mining Science and Technology, 2009, 19(2): 182–184. DOI: 10.3969/j.issn.2095-2686.2009.02.009.
    [12] 宁也, 何萌, 祁畅, 等. 三元可燃混合气体爆炸极限实验及预测方法 [J]. 爆炸与冲击, 2023, 43(4): 045401. DOI: 10.11883/bzycj-2022-0120.

    NING Y, HE M, QI C, et al. Experiment and methods of prediction on the explosion limit of the ternary flammable gas mixture [J]. Explosion and Shock Waves, 2023, 43(4): 045401. DOI: 10.11883/bzycj-2022-0120.
    [13] CUI G, YANG C, LI Z L, et al. Experimental study and theoretical calculation of flammability limits of methane/air mixture at elevated temperatures and pressures [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 252–258. DOI: 10.1016/j.jlp.2016.02.016.
    [14] MASHUGA C V, CROWL D A. Flammability zone prediction using calculated adiabatic flame temperatures [J]. Process Safety Progress, 1999, 18(3): 127–134. DOI: 10.1002/prs.680180303.
    [15] HU X, YU Q, SUN N, et al. Experimental study of flammability limits of oxy-methane mixture and calculation based on thermal theory [J]. International Journal of Hydrogen Energy, 2014, 39(17): 9527–9533. DOI: 10.1016/j.ijhydene.2014.03.202.
    [16] GIURCAN V, RAZUS D, MITU M, et al. Prediction of flammability limits of fuel-air and fuel-air-inert mixtures from explosivity parameters in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 65–71. DOI: 10.1016/j.jlp.2015.01.025.
    [17] QI C, WANG Y L, NING Y, et al. Flammability limits of combustible gases at elevated temperatures and pressures: recent advances and future perspectives [J]. Energy and Fuels, 2022, 36(21): 12896–12916. DOI: 10.1021/acs.energyfuels.2c02567.
    [18] LIU X, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen-air [J]. International Journal of Hydrogen Energy, 2014, 39(12): 6774–6782. DOI: 10.1016/j.ijhydene.2014.02.001.
    [19] YU X Z, YAN X Q, JI W T, et al. Effect of super-ambient conditions on the upper explosion limit of ethane/oxygen and ethylene/oxygen mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 59: 100–105. DOI: 10.1016/j.jlp.2019.03.009.
    [20] 喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.

    YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 122101. DOI: 10.11883/bzycj-2018-0381.
    [21] 张永刚, 杜志国, 张利军, 等. 乙烷丙烷裂解研究 [J]. 乙烯工业, 2018, 30(2): 6–7. DOI: 10.3969/j.issn.1671-7120.2018.02.002.

    ZHANG Y G, DU Z G, ZHANG L J, et al. Study on pyrolysis of ethane and propane [J]. Ethylene Industry, 2018, 30(2): 6–7. DOI: 10.3969/j.issn.1671-7120.2018.02.002.
    [22] Determination of the explosion limits and the limiting oxygen concentration (LOC) for flammable gases and vapours: BS EN 1839—2017 [S]. Brussels: European Committee for Standardization, 2017.
    [23] 空气中可燃气体爆炸极限测定方法: GB/T 12474—2008 [S]. 天津: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2008.
    [24] 李法社, 王华. 高等燃烧学 [M]. 北京: 科学出版社, 2016: 68.
    [25] 沈晓波. 密闭空间内典型可燃气体层流预混火焰传播动力学及其化学反应机理研究 [D]. 合肥: 中国科学技术大学, 2014: 73–74.

    SHEN X B. Study of laminar premixed flame propagating in confined spaces and chemical kinetic mechanisms for typical combustible gases [D]. Heifei, Anhui, China: University of Science and Technology of China, 2014: 73–74.
    [26] BYCHKOV V V, LIBERMAN M A. Dynamics and stability of premixed flames [J]. Physics Reports-Review Section of Physics Letters, 2000, 325(4/5): 115–237. DOI: 10.1016/s0370-1573(99)00081-2.
    [27] WANG T, LUO Z M, WEN H, et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber [J]. Energy, 2021, 214: 119042. DOI: 10.1016/j.energy.2020.119042.
    [28] DAVIS S G, LAW C K. Determination of and fuel structure effects on laminar flame speeds of C-1 to C-8 hydrocarbons [J]. Combustion Science and Technology, 1998, 140(1): 427–449. DOI: 10.1080/00102209808915781.
    [29] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits [J]. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.035.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  48
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-03-16
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回