不同铺层角度复合材料Ω形柱的吸能特性

王瑜 李易航 侯兵 豆清波 张欣玥 索涛 李玉龙

王瑜, 李易航, 侯兵, 豆清波, 张欣玥, 索涛, 李玉龙. 不同铺层角度复合材料Ω形柱的吸能特性[J]. 爆炸与冲击, 2023, 43(7): 073101. doi: 10.11883/bzycj-2022-0525
引用本文: 王瑜, 李易航, 侯兵, 豆清波, 张欣玥, 索涛, 李玉龙. 不同铺层角度复合材料Ω形柱的吸能特性[J]. 爆炸与冲击, 2023, 43(7): 073101. doi: 10.11883/bzycj-2022-0525
WANG Yu, LI Yihang, HOU Bing, DOU Qingbo, ZHANG Xinyue, SUO Tao, LI Yulong. Energy absorption characteristics of Ω-shaped thin-walled composite tubes with different ply orientations[J]. Explosion And Shock Waves, 2023, 43(7): 073101. doi: 10.11883/bzycj-2022-0525
Citation: WANG Yu, LI Yihang, HOU Bing, DOU Qingbo, ZHANG Xinyue, SUO Tao, LI Yulong. Energy absorption characteristics of Ω-shaped thin-walled composite tubes with different ply orientations[J]. Explosion And Shock Waves, 2023, 43(7): 073101. doi: 10.11883/bzycj-2022-0525

不同铺层角度复合材料Ω形柱的吸能特性

doi: 10.11883/bzycj-2022-0525
基金项目: 国家自然科学基金(19702310);民机科研项目(MJKY-2017-F-15)
详细信息
    作者简介:

    王 瑜(1996- ),女,硕士,助理工程师,wangyu5140@126.com

    通讯作者:

    豆清波(1982- ),男,博士,副研究员,douqb@nwpu.edu.cn

  • 中图分类号: O342

Energy absorption characteristics of Ω-shaped thin-walled composite tubes with different ply orientations

  • 摘要: 复合材料Ω形柱在碰撞吸能和轻量化方面具有一定的应用潜力,为研究铺层角度和加载速率对复合材料Ω形柱吸能性能的影响,开展了碳纤维复合材料Ω形柱的轴向压缩实验,深入分析了其吸能评价指标及破坏机理。主要研究内容及结果如下:进行了3种铺层角度([0/90]3s、[0/45/90/−45]3和[±45]3s)Ω形柱的准静态和动态压缩实验研究。准静态加载时,[0/90]3s和[0/45/90/−45]3铺层角度试样均表现为渐进破坏,而[±45]3s铺层角度试样表现为非稳态破坏,破坏模式的不同导致其比吸能约为前2种铺层试样的1/2;动态加载时,3种铺层角度的Ω形柱均表现为渐进破坏,且比吸能较为接近。其中,[0/90]3s和[0/45/90/−45]3铺层角度Ω形柱在动态加载时的比吸能较准静态分别降低了29.70%和20.97%,而[±45]3s比吸能较准静态提高了46.10%,破坏模式的转变是其比吸能提高的主要原因。准静态加载时,铺层角度对Ω形柱比吸能有一定影响。而动态加载时,加载速率的影响占主导地位,铺层角度影响较小。
  • 图  1  复合材料Ω形柱结构示意图(单位:mm)

    Figure  1.  Schematic diagram of a Ω-shaped composite tube structure (unit: mm)

    图  2  复合材料Ω形柱的照片

    Figure  2.  Photos of a Ω-shaped composite tube

    图  3  夹持装置示意图

    Figure  3.  Schematic diagram of the clamping device

    图  4  实验装置

    Figure  4.  Experimental devices

    图  5  典型复合材料薄壁结构压溃载荷-位移曲线

    Figure  5.  Crushing load-displacement curve of a typical thin-walled composite structure

    图  6  不同铺层角度试样的准静态载荷-位移曲线

    Figure  6.  Quasi-static load-displacement curves for specimens with different ply orientations

    图  7  不同铺层角度试样的准静态加载吸能特性

    Figure  7.  Quasi-static loading energy absorption characteristics of specimens with different ply orientations

    图  8  不同铺层角度试样的准静态压溃破坏形貌

    Figure  8.  Quasi-static crushing failure morphologies of specimens with different ply orientations

    图  9  不同铺层角度Ω形柱试样的动态载荷-位移曲线

    Figure  9.  Dynamic load-displacement curves of Ω-shaped tube specimens with different ply orientations

    图  10  不同铺层角度Ω形柱试样的动态加载吸能特性

    Figure  10.  Dynamic loading energy absorption characteristics of Ω-shaped tube specimens with different ply orientations

    图  11  不同铺层角度试样的动态加载破坏形貌

    Figure  11.  Dynamic loading failure morphologies of specimens with different ply orientations

    图  12  不同加载速率下试样吸能参数对比

    Figure  12.  Comparison of energy absorption parameters of specimens at different loading rates

    表  1  实验方案

    Table  1.   Experimental schemes

    编号铺层角度加载速率/(m·s−1)
    A1-S[0/90]3s8.3×10−5
    A1-D[0/90]3s1
    A2-S[0/45/90/−45]38.3×10−5
    A2-D[0/45/90/−45]31
    A3-S[±45]3s8.3×10−5
    A3-D[±45]3s1
    下载: 导出CSV
  • [1] 杨嘉陵, 吴卫华. 武装直升机抗坠毁设计研究 [J]. 机械工程学报, 2001, 37(5): 1–6. DOI: 10.3901/jme.2001.05.001.

    YANG J L, WU W H. Study on the armed helicopter crashworthiness design [J]. Chinese Journal of Mechanical Engineering, 2001, 37(5): 1–6. DOI: 10.3901/jme.2001.05.001.
    [2] 乔维高. 车辆被动安全性研究现状及发展 [J]. 农业机械学报, 2005, 36(9): 144–146, 127. DOI: 10.3969/j.issn.1000-1298.2005.09.037.

    QIAO W G. Research status and development of vehicle passive safety [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(9): 144–146, 127. DOI: 10.3969/j.issn.1000-1298.2005.09.037.
    [3] 刘建新, 赵华, 周本宽. 高速动力车能量吸收装置 [J]. 铁道学报, 1997, 19(3): 32–36. DOI: 10.3321/j.issn:1001-8360.1997.03.006.

    LIU J X, ZHAO H, ZHOU B K. Energy absorbing devices for high speed locomotive under crash [J]. Journal of the China Railway Society, 1997, 19(3): 32–36. DOI: 10.3321/j.issn:1001-8360.1997.03.006.
    [4] NAGEL G M, THAMBIRATNAM D P. Computer simulation and energy absorption of tapered thin-walled rectangular tubes [J]. Thin-Walled Structures, 2005, 43(8): 1225–1242. DOI: 10.1016/j.tws.2005.03.008.
    [5] YAMAZAKI K, HAN J. Maximization of the crushing energy absorption of cylindrical shells [J]. Advances in Engineering Software, 2000, 31(6): 425–434. DOI: 10.1016/S0965-9978(00)00004-1.
    [6] NAGEL G M, THAMBIRATNAM D P. A numerical study on the impact response and energy absorption of tapered thin-walled tubes [J]. International Journal of Mechanical Sciences, 2004, 46(2): 201–216. DOI: 10.1016/j.ijmecsci.2004.03.006.
    [7] HOU S J, ZHAO S Y, REN L L, et al. Crashworthiness optimization of corrugated sandwich panels [J]. Materials and Design, 2013, 51: 1071–1084. DOI: 10.1016/j.matdes.2013.04.086.
    [8] FARLEY G L. Crash energy absorbing composite sub-floor structure [C]//27th Structures, Structural Dynamics and Materials Conference. San Antonio: AIAA, 1986: 944. DOI: 10.2514/6.1986-944.
    [9] FARLEY G L. Energy absorption of composite materials [J]. Journal of Composite Materials, 1983, 17(3): 267–279. DOI: 10.1177/002199838301700307.
    [10] WANG Y F, FENG J S, WU J H, et al. Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions [J]. Composite Structures, 2016, 153: 356–368. DOI: 10.1016/j.compstruct.2016.06.033.
    [11] THORNTON P H, EDWARDS P J. Energy absorption in composite tubes [J]. Journal of Composite Materials, 1982, 16(6): 521–545. DOI: 10.1177/002199838201600606.
    [12] HU D Y, ZHANG C, MA X B, et al. Effect of fiber orientation on energy absorption characteristics of glass cloth/epoxy composite tubes under axial quasi-static and impact crushing condition [J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 489–501. DOI: 10.1016/j.compositesa.2016.08.017.
    [13] 郑金鑫, 于增信, 万志敏, 等. 层状纤维圆柱壳轴向压缩破损实验研究 [J]. 实验力学, 1999, 14(2): 237–242.

    ZHENG J X, YU Z X, WAN Z M, et al. An experimental study on the progressive damage of fiber laminated cylindrical shells under axial compression [J]. Journal of Experimental Mechanics, 1999, 14(2): 237–242.
    [14] 解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性 [J]. 复合材料学报, 2018, 35(12): 3261–3270. DOI: 10.13801/j.cnki.fhclxb.20180319.002.

    XIE J, ZHANG X H, SONG S S, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression [J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3261–3270. DOI: 10.13801/j.cnki.fhclxb.20180319.002.
    [15] 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验 [J]. 复合材料学报, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.

    WANG Y, WU Z B, LIU F. Crush experiment of composite cargo floor stanchions [J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.
    [16] JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing [J]. Composite Structures, 2011, 93(10): 2646–2654. DOI: 10.1016/j.compstruct.2011.04.032.
    [17] 万志敏, 桂良进, 谢志民, 等. 玻璃-环氧圆柱壳吸能特性的试验研究 [J]. 复合材料学报, 1999, 16(2): 15–20. DOI: 10.13801/j.cnki.fhclxb.1999.02.004.

    WAN Z M, GUI L J, XIE Z M, et al. Experimental study on energy-absorption properties of glass-epoxy cylindrical shells [J]. Acta Materiae Compositae Sinica, 1999, 16(2): 15–20. DOI: 10.13801/j.cnki.fhclxb.1999.02.004.
    [18] FARLEY G L. The effects of crushing speed on the energy-absorption capability of composite tubes [J]. Journal of Composite Materials, 1991, 25(10): 1314–1329. DOI: 10.1177/002199839102501004.
    [19] MAMALIS A G, ROBINSON M, MANOLAKOS D E, et al. Crashworthy capability of composite material structures [J]. Composite Structures, 1997, 37(2): 109–134. DOI: 10.1016/S0263-8223(97)80005-0.
    [20] GILAT A, GOLDBERG R K, ROBERTS G D. High strain rate response of epoxy in tensile and shear loading [J]. Journal de Physique Ⅳ, 2003, 110: 123–127. DOI: 10.1051/jp4:20020681.
    [21] SIGALAS I, KUMOSA M, HULL D. Trigger mechanisms in energy-absorbing glass cloth/epoxy tubes [J]. Composites Science and Technology, 1991, 40(3): 265–287. DOI: 10.1016/0266-3538(91)90085-4.
    [22] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Energy absorption capability of fibreglass composite square frusta subjected to static and dynamic axial collapse [J]. Thin-Walled Structures, 1996, 25(4): 269–295. DOI: 10.1016/0263-8231(95)00057-7.
    [23] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. The static and dynamic axial crumbling of thin-walled fibreglass composite square tubes [J]. Composites Part B: Engineering, 1997, 28(4): 439–451. DOI: 10.1016/S1359-8368(96)00066-2.
    [24] RAMAKRISHNA S, HAMADA H. Energy absorption characteristics of crash worthy structural composite materials [J]. Key Engineering Materials, 1997, 141/142/143: 585–622. DOI: 10.4028/www.scientific.net/KEM.141-143.585.
    [25] NARESH K, SHANKAR K, RAO B S, et al. Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites [J]. Composites Part B: Engineering, 2016, 100: 125–135. DOI: 10.1016/j.compositesb.2016.06.007.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  56
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-05-11
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回