带壳JH-14C传爆药烤燃实验及响应特性数值模拟

肖有才 王瑞胜 范晨阳 张宏 王志军 孙毅

肖有才, 王瑞胜, 范晨阳, 张宏, 王志军, 孙毅. 带壳JH-14C传爆药烤燃实验及响应特性数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555
引用本文: 肖有才, 王瑞胜, 范晨阳, 张宏, 王志军, 孙毅. 带壳JH-14C传爆药烤燃实验及响应特性数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555
XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555
Citation: XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555

带壳JH-14C传爆药烤燃实验及响应特性数值模拟

doi: 10.11883/bzycj-2022-0555
基金项目: 国家自然科学基金(11802273);山西省青年科学基金(201901D211279)
详细信息
    作者简介:

    肖有才(1988- ),男,博士,副教授, xiaoyoucai@nuc.edu.cn

  • 中图分类号: O381

Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation

  • 摘要: 为了探究受外部不同温度影响下带壳JH-14C传爆药的响应特性,设计了一套慢速烤燃下可测量JH-14C传爆药温度变化和壳体应变的实验装置,获取了不同升温速率下弹体内部温度随时间变化曲线、慢烤响应过程中装药壳体径向应变历程曲线,揭示了带壳JH-14C传爆药的慢速烤燃响应特性,将烤燃实验中弹体径向应变测试结果和炸药反应烈度相关联,提出了一种弹药烤燃实验反应等级的判定方法;基于热力学和装药化学反应,建立了带壳装药烤燃热传导模型和Arrhenius模型,采用BP神经网络反演了JH-14C传爆药热的热反应参数,对不同升温速率下弹体内部的温度场进行了研究。结果表明:升温速率越低,装药的响应温度越高,响应越剧烈;随着升温速率的降低,炸药的点火区域从炸药两端外缘逐渐向炸药内部转移。
  • 图  1  烤燃实验系统

    Figure  1.  Cook-off experimental system

    图  2  烤燃弹实物图、烤燃弹尺寸及温度测点布置

    Figure  2.  A photo of the cook-off bomb specimen as well as its sizes and the measuring point arrangement

    图  3  JH-14C传爆药细观形貌图

    Figure  3.  Meso-morphology of the JH-14C booster explosive

    图  4  带壳JH-14C传爆药在1.0 ℃/min和3.3 ℃/h升温速率下各测点的温度历程曲线

    Figure  4.  The temperature history curves at different measuring points in the JH-14C booster explosive with a shell under the heating rates of 1.0 ℃/min and 3.3 ℃/h

    图  5  3.3 ℃/h升温速率下烤燃结束后回收的实验弹体

    Figure  5.  The recovered bomb that has undergone cook-off under the heating rate of 3.3 ℃/h

    图  6  1.0 ℃/min和3.3 ℃/h升温速率下烤燃弹体径向应变历程曲线

    Figure  6.  Radial strain history curves of cook-off bombs under the heating rates of 1.0 ℃/min and 3.3 ℃/h

    图  7  含2层隐含层的BP神经网络

    Figure  7.  A back-propagation (BP) neural network with two hidden layers

    图  8  在1.0 ℃/min的升温速率下两测点温度的实验值与计算值的比较

    Figure  8.  Comparison between experimental and calculated temperatures at the two measuring points under the heating rate of 1.0 ℃/min

    图  9  在3.3 ℃/h的升温速率下两测点温度的实验值与计算值的比较

    Figure  9.  Comparison between experimental and calculated temperatures at the two measuring points under the heating rate of 3.3 ℃/h

    图  10  在1.0 ℃/min的升温速率下烤燃弹体不同测点的温度-时间曲线

    Figure  10.  Temperature-time curves at different measuring points of the cook-off bomb under the heating rate of 1.0 ℃/min

    图  11  在1.0 ℃/min的升温速率下JH-14C传爆药不同时刻温度分布

    Figure  11.  Temperature distribution in the JH-14C booster explosive under the heating rate of 1.0 ℃/min at different times

    图  12  不同升温速率下JH14C传爆药各测点的温度-时间曲线

    Figure  12.  Temperature-time curves of each measuring point in the JH-14C booster explosive under different heating rates

    图  13  不同升温速率下JH-14C传爆药的温度分布

    Figure  13.  Temperature distribution in the JH-14C booster explosive under different heating rates

    表  1  响应时刻不同测点的温度

    Table  1.   Temperatures of different measuring points at response times

    升温速率响应温度/℃
    外壁测点1测点2测点3测点4测点5测点6
    1.0 ℃/min230241234234243227226
    3.3 ℃/h212215217218221240264
    下载: 导出CSV

    表  2  壳体和炸药的热物理参数[28-29]

    Table  2.   Thermophysical parameters of the shell and explosive[28-29]

    材料密度/
    (kg·m−3)
    比热容/
    (J·kg−1·K−1)
    导热系数/
    (W·m−1·K−1)
    35CrMnSi785048043
    JH-14C170011760.4644
    下载: 导出CSV

    表  3  不同升温速率下JH-14C传爆药各测点在响应时刻的温度

    Table  3.   Temperature of each measuring point in the JH-14C booster explosive at response time under different heating rates

    升温速率/(℃·min−1)响应时间/min响应温度/℃
    外壁测点1测点2测点3测点4测点5测点6
    3.070.8235238229229212200199
    5.043.5240230223223195179178
    9.024.8246219211211166141141
    20.011.62541951871871077777
    下载: 导出CSV
  • [1] 郭伟, 贾路川, 王浩旭, 等. 加速老化PBX-6炸药的烤燃实验研究 [J]. 火炸药学报, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.

    GUO W, JIA L C, WANG H X, et al. Experimental research on cook-off test of accelerated aging PBX-6 explosive [J]. Chinese Journal of Explosives and Propellants, 2022, 45(3): 315–322. DOI: 10.14077/j.issn.1007-7812.202203040.
    [2] 刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟 [J]. 兵工学报, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.

    LIU J, YU Y G. Simulation of slow cook-off for modular charges at different heating rates [J]. Acta Armamentarii, 2019, 40(5): 990–995. DOI: 10.3969/j.issn.1000-1093.2019.05.011.
    [3] 王沛, 陈朗, 冯长根. 不同升温速率下炸药烤燃模拟计算分析 [J]. 含能材料, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.

    WANG P, CHEN L, FENG C G. Numerical simulation of cook-off for explosive at different heating rates [J]. Chinese Journal of Energetic Materials, 2009, 17(1): 46–49, 54. DOI: 10.3969/j.issn.1006-9941.2009.01.012.
    [4] 邓玉成, 李军, 任慧, 等. 不同结构尺寸丁羟发动机慢速烤燃特性 [J]. 含能材料, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.

    DENG Y C, LI J, REN H, et al. Slow cook-off characteristics of HTPB SRM with different structural sizes [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 155–162. DOI: 10.11943/CJEM2021097.
    [5] MERZHANOV A G, AVERSON A E. The present state of the thermal ignition theory: an invited review [J]. Combustion and Flame, 1971, 16(1): 89–124. DOI: 10.1016/S0010-2180(71)80015-9.
    [6] TERRONES G, SOUTO F J, SHEA R F, et al. Data analysis, pre-ignition assessment, and post-ignition modeling of the large-scale annular cookoff tests: LA-14190 [R]. Los Alamos, USA: Los Alamos National Laboratory, 2005. DOI: 10.2172/861364.
    [7] ASAY B W. Shock wave science and technology reference library, vol. 5: non-shock initiation of explosives [M]. Berlin, Germany: Springer, 2010: 198–200. DOI: 10.1007/978-3-540-87953-4.
    [8] 刘仓理. 装药化爆安全性 [M]. 北京: 科学出版社, 2022: 123–127.

    LIU C L. Explosive safety of charge [M]. Beijing, China: Science Press, 2022: 123–127.
    [9] PARKER R P. USA small-scale cook-off bomb (SCB) test [C]//Minutes of 21st Department of Defense Explosives Safety Board Explosives Safety Seminar. Houston, USA, 1984: 539–548.
    [10] HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
    [11] KOU Y F, CHEN L, LU J Y, et al. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations [J]. Combustion and Flame, 2021, 228: 154–162. DOI: 10.1016/j.combustflame.2021.01.043.
    [12] LI X D, WANG J Y, LIU W J, et al. Effect of vent hole size on combustion and explosion characteristics during cook-off tests [J]. Combustion and Flame, 2022, 240: 111989. DOI: 10.1016/j.combustflame.2022.111989.
    [13] 智小琦, 胡双启, 李娟娟, 等. 不同约束条件下钝化RDX的烤燃响应特性 [J]. 火炸药学报, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.

    ZHI X Q, HU S Q, LI J J, et al. Cook-off response characteristics of desensitizing RDX explosive under different restriction conditions [J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
    [14] WHITE N, REEVES T, CHEESE P, et al. Live decomposition imaging of HMX/HTPB based formulations during cook-off in the dual window test vehicle [J]. AIP Conference Proceedings, 2018, 1979(1): 150041.
    [15] CHEESE P, REEVES T, WHITE N, et al. Development of a dual windowed test vehicle for live streaming of cook-off in energetic materials [J]. AIP Conference Proceedings, 2018, 1979(1): 150009.
    [16] 乔炳旭, 李小东, 燕翔, 等. 粘结剂种类和含量对HMX基PBX烤燃响应特性的影响研究 [J]. 兵器装备工程学报, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.

    QIAO B X, LI X D, YAN X, et al. Study on influence of binder type and content of HMX-based PBX on response behavior under cook-off conditions [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 261–267. DOI: 10.11809/bqzbgcxb2021.12.040.
    [17] TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. DOI: 10.1080/07370650701719170.
    [18] CHAVES F R, GÓIS J C. Slow cook-off simulation of PBX based on RDX [J]. Journal of Aerospace Technology and Management, 2017, 9(2): 225–230. DOI: 10.5028/jatm.v9i2.729.
    [19] JORENBY J W. Heat transfer analysis and assessment of kinetics systems for PBX 9501: LA-14259-T [R]. Los Alamos, USA: Los Alamos National Laboratory, 2006. DOI: 10.2172/902466.
    [20] JAEGER D L. Thermal response of spherical explosive charges subjected to external heating: W-7405-ENG-36 [R]. Los Alamos, USA: Los Alamos National Laboratory, 1980. DOI: 10.2172/5102476.
    [21] DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX 9501 [J]. AIP Conference Proceedings, 2000, 505(1): 837–840.
    [22] 刘瑞峰, 王昕捷, 黄风雷, 等. 2, 4-二硝基苯甲醚基熔铸炸药宏细观烤燃响应特性数值分析 [J]. 兵工学报, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.

    LIU R F, WANG X J, HUANG F L, et al. Macro-meso-scale cook-off simulations of DNAN-based melt-cast explosives [J]. Acta Armamentarii, 2022, 43(2): 287–296. DOI: 10.3969/j.issn.1000-1093.2022.02.006.
    [23] 陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.

    CHEN L, MA X, HUANG Y M, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
    [24] GRASWALD M, GUTSER R, SCHWEIZER M. Extended multi-physics model for slow-cook off events of warheads [C]//Insensitive Munitions and Energetic Materials Technology Symposium. Seville, Spain, 2019.
    [25] Defence Investment Division, NATO International Staff. Guidance on the assessment and development of insensitive munitions (IM): AOP-39 (3rd ed) [S]. USA: Allied Ordnance Publication, 2010. DOI: 10.5281/zenodo.3592238.
    [26] XIAO Y C, SUN Y, LI X, et al. Dynamic compressive properties of polymer bonded explosives under confining pressure [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 873–882. DOI: 10.1002/prep.201700016.
    [27] 李硕, 袁俊明, 刘玉存, 等. 聚黑-14C的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.

    LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosives and Propellants, 2016, 39(6): 63–68. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
    [28] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.

    DAI X G, HUANG Y M, LV Z J, et al. Reaction behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
    [29] 牛余雷, 南海, 冯晓军, 等. RDX基PBX炸药烤燃试验与数值计算 [J]. 火炸药学报, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.

    NIU Y L, NAN H, FENG X J, et al. Cook-off test and its numerical calculation of RDX-based PBX explosive [J]. Chinese Journal of Explosives and Propellants, 2011, 34(1): 32–36, 41. DOI: 10.3969/j.issn.1007-7812.2011.01.007.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  82
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回