基于爆炸切割试验的有机玻璃本构模型参数反演

张宇卓 赵铮

张宇卓, 赵铮. 基于爆炸切割试验的有机玻璃本构模型参数反演[J]. 爆炸与冲击, 2023, 43(5): 054201. doi: 10.11883/bzycj-2023-0006
引用本文: 张宇卓, 赵铮. 基于爆炸切割试验的有机玻璃本构模型参数反演[J]. 爆炸与冲击, 2023, 43(5): 054201. doi: 10.11883/bzycj-2023-0006
ZHANG Yuzhuo, ZHAO Zheng. Parameter inversion of the polymethyl methacrylate constitutive model based on explosive cutting experiment[J]. Explosion And Shock Waves, 2023, 43(5): 054201. doi: 10.11883/bzycj-2023-0006
Citation: ZHANG Yuzhuo, ZHAO Zheng. Parameter inversion of the polymethyl methacrylate constitutive model based on explosive cutting experiment[J]. Explosion And Shock Waves, 2023, 43(5): 054201. doi: 10.11883/bzycj-2023-0006

基于爆炸切割试验的有机玻璃本构模型参数反演

doi: 10.11883/bzycj-2023-0006
基金项目: 国家自然科学基金(11302106)
详细信息
    作者简介:

    张宇卓(1999- ),男,硕士研究生,tumo5315@163.com

    通讯作者:

    赵 铮(1979- ),男,博士,副教授,zhaozheng@126.com

  • 中图分类号: O383; TJ04

Parameter inversion of the polymethyl methacrylate constitutive model based on explosive cutting experiment

  • 摘要: 为了获取爆炸切割数值模拟中有机玻璃(PMMA)的材料本构模型参数,建立了一种基于神经网络的有机玻璃Johnson Holmquist ceramics (JH-2)本构模型参数反演方法:基于从爆炸切割试验和现有研究得到的JH-2本构模型经验参数,确定本构模型参数的调整区间;使用LS-DYNA数值模拟软件对2.5 mm宽爆炸切割索切割14 mm PMMA平板过程进行数值模拟并收集平板损伤数据集;建立PMMA平板本构模型参数与损伤数据之间的神经网络模型;通过训练完成的神经网络模型对PMMA平板的JH-2本构模型参数进行反演。为验证通过反演参数的可靠性,进行了4.2 mm宽爆炸切割索切割19 mm PMMA平板试验和有限元数值模拟,计算结果中的平板损伤情况与实验结果相差较小,表明通过反演获得的JH-2本构模型参数能较好地应用于PMMA平板爆炸切割数值模拟。传统材料参数获取方法,该参数反演方法相较于可以通过较少的试验及测试,获得比较准确的材料本构模型参数。
  • 图  1  切割索截面

    Figure  1.  Cross-section of linear shaped charge

    图  2  爆炸切割实验

    Figure  2.  Explosive cutting test

    图  3  爆炸切割试验结果

    Figure  3.  Explosive cutting test results

    图  4  局部有限元网格

    Figure  4.  Partial finite element mesh

    图  5  神经网络结构

    Figure  5.  Neural network structure

    图  6  目标函数收敛过程

    Figure  6.  Convergence process of the objective function

    图  7  PMMA平板爆炸切割试验数值模拟结果

    Figure  7.  Numerical simulation results of PMMA flat plate explosive cutting test

    图  8  试验结果与数值模拟结果对比

    Figure  8.  Comparison of test results and numerical simulation results

    图  9  爆炸切割索横截面

    Figure  9.  Cross-section of linear shaped charge

    图  10  爆炸切割试验结果

    Figure  10.  Explosive cutting test results

    图  11  有限元数值模拟结果

    Figure  11.  Finite element numerical simulation results

    表  1  冲击强度测试数据

    Table  1.   Testing data of impact strength

    平板冲击强度/(J·cm−2)
    测试1测试2测试3平均值
    11.351.501.251.37
    21.831.651.741.74
    32.852.823.002.89
    下载: 导出CSV

    表  2  PMMA平板损伤数据

    Table  2.   PMMA flat plate damage data

    平板平板厚度/mm侵彻深度/mm冲击断裂厚度/mm层裂厚度/mm是否成功切开
    1143.55.55.0
    2144.74.84.5
    3147.300
    下载: 导出CSV

    表  3  PMMA平板JH-2本构模型参数调整区间

    Table  3.   Adjustment interval of parameters of PMMA flat plate JH-2 constitutive model

    ABCMN
    1.85~2.052.35~2.65−0.001~0.0010.50~0.800.50~0.80
    下载: 导出CSV

    表  4  数据集的输入值

    Table  4.   Input values of the dataset

    编号h1/cmh2/cmh3/cmd1/cmd2/cmd3/cmδ1/cmδ2/cmδ3/cm
    15.02.07.04.53.91.47.21.50
    23.44.95.74.14.95.06.93.10
    613.35.35.43.27.83.05.23.10
    624.15.24.73.58.02.56.01.30
    下载: 导出CSV

    表  5  数据集的输出值

    Table  5.   Output values of the dataset

    编号ABCMN
    11.922.400.00350.520.55
    21.942.47−0.00210.610.59
    611.992.55−0.00110.600.55
    622.032.5900.600.67
    下载: 导出CSV

    表  6  PMMA平板JH-2本构模型参数反演值

    Table  6.   Inversion values of parameters of PMMA flat plate JH-2 constitutive model

    ABCMN
    1.95662.4918−0.02050.58610.5860
    下载: 导出CSV

    表  7  试验结果与数值模拟结果对比

    Table  7.   Comparison of test results and numerical simulation results

    材料侵彻深度/mm冲击断裂厚度/mm层裂厚度/mm
    试验数值模拟试验数值模拟试验数值模拟
    Sample 13.53.45.55.55.05.1
    Sample 24.74.74.74.74.64.6
    Sample 37.37.00000
    下载: 导出CSV
  • [1] LI J X, LIU P F, TONG X Y. A simplified method for studying cyclic creep behaviors of deep-sea manned submersible viewport windows [J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104565. DOI: 10.1016/j.ijpvp.2021.104565.
    [2] DAR U A, ZHANG W H, XU Y J. Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA [J]. International Journal of Mechanics and Materials in Design, 2014, 10(1): 93–107. DOI: 10.1007/s10999-013-9233-y.
    [3] KANG Y Q, LI Y, XIAO C L, et al. Fractal damage and crack propagation of PMMA in multiple slit charge blasting [J]. Materials Today Communications, 2022, 31: 103249. DOI: 10.1016/j.mtcomm.2022.103249.
    [4] SAHRAOUI S, EL MAHI A, CASTAGNÈDE B. Measurement of the dynamic fracture toughness with notched PMMA specimen under impact loading [J]. Polymer Testing, 2009, 28(7): 780–783. DOI: 10.1016/j.polymertesting.2009.06.005.
    [5] 谢中秋, 张蓬蓬. PMMA材料的动态压缩力学特性及应变率相关本构模型研究 [J]. 实验力学, 2013, 28(2): 220–226. DOI: 10.7520/1001-4888-12-054.

    XIE Z Q, ZHANG P P. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material [J]. Journal of Experimental Mechanics, 2013, 28(2): 220–226. DOI: 10.7520/1001-4888-12-054.
    [6] DOROGOY A, GODINGER A, RITTEL D. Application of the incubation time criterion for dynamic brittle fracture [J]. International Journal of Impact Engineering, 2018, 112: 66–73. DOI: 10.1016/j.ijimpeng.2017.09.019.
    [7] RITTEL D, DOROGOY A. Impact of thick PMMA plates by long projectiles at low velocities. Part Ⅰ: Effect of head’s shape [J]. Mechanics of Materials, 2014, 70: 41–52. DOI: 10.1016/j.mechmat.2013.11.010.
    [8] 邹德波, 赵铮. 冲击强度对爆炸切割脆性材料的影响研究 [J]. 兵器装备工程学报, 2021, 42(8): 100–105. DOI: 10.11809/bqzbgcxb2021.08.016.

    ZOU D B, ZHAO Z. Study on influence of impact strength on explosive cutting of brittle materials [J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 100–105. DOI: 10.11809/bqzbgcxb2021.08.016.
    [9] 李木易, 邹德波, 赵铮. 下方介质对爆炸切割脆性平板的影响研究 [J]. 爆破器材, 2021, 50(5): 43–49. DOI: 10.3969/j.issn.1001-8352.2021.05.008.

    LI M Y, ZOU D B, ZHAO Z. Influence of the underlying medium on explosive cutting of brittle plates [J]. Explosive Materials, 2021, 50(5): 43–49. DOI: 10.3969/j.issn.1001-8352.2021.05.008.
    [10] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.

    XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127.
    [11] 石祥超, 陶祖文, 孟英峰, 等. 致密砂岩Johnson-Holmquist损伤本构模型参数求取及验证 [J]. 岩石力学与工程学报, 2015, 34(S2): 3750–3758. DOI: 10.13722/j.cnki.jrme.2015.0515.

    SHI X C, TAO Z W, MENG Y F, et al. Calculation and verification for Johnson-Holmquist constitutive model parameters of tight sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3750–3758. DOI: 10.13722/j.cnki.jrme.2015.0515.
    [12] 贠永峰, 范永慧, 孙扬. 基于BP神经网络的隧道围岩力学参数反分析方法 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(2): 292–306.

    YUN Y F, FAN Y H, SUN Y. Back-analysis of mechanical parameters of tunnel surrounding rock by BP neural network method [J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(2): 292–306.
    [13] 李守巨, 于申, 孙振祥, 等. 基于神经网络的堆石料本构模型参数反演 [J]. 计算机工程, 2014, 40(6): 267–271. DOI: 10.3969/j.issn.1000-3428.2014.06.057.

    LI S J, YU S, SUN Z X, et al. Parameter inversion of constitutive model for rockfill material based on neural network [J]. Computer Engineering, 2014, 40(6): 267–271. DOI: 10.3969/j.issn.1000-3428.2014.06.057.
    [14] 宋宇宁. 有限元响应面法在土石坝可靠度分析中的应用 [D]. 大连: 大连理工大学, 2021: 14–20. DOI: 10.26991/d.cnki.gdllu.2021.002838.
    [15] 王志云, 李守巨, 王颂. 混凝土细观本构模型参数反演的估计方法 [J]. 黑龙江科技大学学报, 2019, 29(2): 225–229. DOI: 10.3969/j.issn.2095-7262.2019.02.019.

    WANG Z Y, LI S J, WANG S. Parameter estimation procedure for meso constitutive model of concrete materials [J]. Journal of Heilongjiang University of Science and Technology, 2019, 29(2): 225–229. DOI: 10.3969/j.issn.2095-7262.2019.02.019.
    [16] 茹一帆, 张乐乐, 刘文, 等. 基于缺口试件应力状态试验的Johnson-Cook模型参数反演标定方法 [J]. 机械工程学报, 2021, 57(22): 60–70. DOI: 10.3901/JME.2021.22.060.

    RU Y F, ZHANG L L, LIU W, et al. Inverse determination method of Johnson-Cook model parameters based on the stress state test of notched specimens [J]. Journal of Mechanical Engineering, 2021, 57(22): 60–70. DOI: 10.3901/JME.2021.22.060.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  70
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-02-17
  • 网络出版日期:  2023-03-29
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回