开放空间高压氢气射流中点火爆炸的实验研究

马梦飞 於星 张爱凤 张佳庆 祝现礼 王昌建

马梦飞, 於星, 张爱凤, 张佳庆, 祝现礼, 王昌建. 开放空间高压氢气射流中点火爆炸的实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0037
引用本文: 马梦飞, 於星, 张爱凤, 张佳庆, 祝现礼, 王昌建. 开放空间高压氢气射流中点火爆炸的实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0037
MA Mengfei, YU Xing, ZHANG Aifeng, ZHANG Jiaqing, ZHU Xianli, WANG Changjian. Experimental study on ignition and explosion of high-pressure hydrogen jet in open space[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0037
Citation: MA Mengfei, YU Xing, ZHANG Aifeng, ZHANG Jiaqing, ZHU Xianli, WANG Changjian. Experimental study on ignition and explosion of high-pressure hydrogen jet in open space[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0037

开放空间高压氢气射流中点火爆炸的实验研究

doi: 10.11883/bzycj-2023-0037
基金项目: 国家重点研发计划项目(2021YFB4001004);国家电网公司总部科技项目(5419-202219075A-1-1-ZN)
详细信息
    作者简介:

    马梦飞(1998- ),男,硕士研究生,1625388658@qq.com

    通讯作者:

    王昌建(1975- ),男,博士,教授,博士生导师,chjwang@hfut.edu.cn

  • 中图分类号: O383.1

Experimental study on ignition and explosion of high-pressure hydrogen jet in open space

  • 摘要: 采用高速相机和压力传感器,对开放空间中稳态射流氢气点火爆炸初期的火焰行为和超压变化规律进行了实验研究。结果表明:在点火爆炸初期,火焰在点火电极处以球形向外扩散;爆炸后4~6 ms,火焰前锋达到最大位移,之后逐渐熄灭,最后形成射流火焰。火焰前锋位移主要受喷嘴直径影响,并随喷嘴直径的增大而增大。火焰宽度的变化规律与火焰前锋位移基本相似。整个爆炸过程仅出现1个超压峰值,正压维持时间约为1 ms。在同一点火距离处,峰值超压随氢气流量的增加而增大。在相同氢气流量下,峰值超压随点火距离的增大而减小。最大峰值超压与氢气流量成正比,与点火距离成反比。
  • 图  1  实验装置示意图

    Figure  1.  Layout of the experimental apparatus

    图  2  氢气火焰图像处理过程(工况18,p0=0.5 MPa, d=4 mm)

    Figure  2.  Image processing of hydrogen flame (Case 18, p0=0.5 MPa, d=4 mm)

    图  3  初始阶段火焰演变过程(工况18,p0=0.5 MPa, d=4 mm)

    Figure  3.  Evolutions of the flame at the initial stage (Case 18, p0=0.5 MPa, d=4 mm)

    图  4  平均体积分数随距离的变化(工况18,p0=0.5 MPa, d=4 mm)

    Figure  4.  Variation of mean concentration with distance (Case 18, p0=0.5 MPa, d=4 mm)

    图  5  3 ms时氢气火焰前锋位移和宽度

    Figure  5.  Hydrogen flame front displacement and width at 3 ms

    图  6  火焰前锋位移和宽度随点火距离的变化

    Figure  6.  Variations of flame front displacement and width with ignition distance

    图  7  超压随时间变化趋势(工况17, p0=0.5 MPa, d=4 mm)

    Figure  7.  Evolution of overpressure with time (Case 17, p0=0.5 MPa, d=4 mm)

    图  8  不同流量下峰值超压随点火距离的变化

    Figure  8.  Evolution of peak overpressure with ignition distance at different flow rates

    图  9  不同点火距离下最大峰值超压随流量的变化

    Figure  9.  Relation between the flow rate and maximum peak overpressure at different ignition distances

    图  10  最大峰值超压与点火距离的关系

    Figure  10.  Relationship between the maximum peak overpressure and ignition distance

    表  1  氢气点火实验参数

    Table  1.   Experimental parameters of hydrogen ignition

    工况 d/mm 点火距离/cm p0/MPa m/(g·s−1 最大火焰前锋位移/mm $ \bar c $
    1 2 16 0.3 0.78 229.6 0.314
    2 2 20 0.3 0.78 199.5 0.254
    3 2 30 0.3 0.78 73.5 0.171
    4 2 37 0.3 0.78
    5 2 16 0.5 1.17 339.5 0.325
    6 2 20 0.5 1.17 267.4 0.269
    7 2 30 0.5 1.17 147.0 0.188
    8 2 37 0.5 1.17 145.6 0.156
    9 2 16 0.7 1.56 387.8 0.322
    10 2 20 0.7 1.56 338.8 0.282
    11 2 30 0.7 1.56 229.6 0.196
    12 2 37 0.7 1.56 88.2 0.164
    13 3 16 0.5 2.64 350.0 0.449
    14 3 20 0.5 2.64 338.1 0.377
    15 3 30 0.5 2.64 348.6 0.269
    16 3 37 0.5 2.64 264.6 0.224
    17 4 16 0.5 4.69 576.5 0.574
    18 4 20 0.5 4.69 592.2 0.471
    19 4 30 0.5 4.69 321.3 0.342
    20 4 37 0.5 4.69 342.3 0.287
    下载: 导出CSV
  • [1] LI H W, TANG Z S, LI J L, et al. Investigation of vented hydrogen-air deflagrations in a congested vessel [J]. Process Safety and Environmental Protection, 2019, 129: 196–201. DOI: 10.1016/j.psep.2019.07.009.
    [2] 郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.

    HAO T T, WANG C J, YAN W J, et al. Structural dynamical characteristics induced by vented hydrogen explosion [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
    [3] RUI S C, WANG C J, GUO S S, et al. Hydrogen-air explosion with concentration gradients in a cubic enclosure [J]. Process Safety and Environmental Protection, 2021, 151: 141–150. DOI: 10.1016/j.psep.2021.05.003.
    [4] WANG L Q, LI T, MA H H. Explosion behaviors of hydrogen-nitrous oxide mixtures at reduced initial pressures [J]. Process Safety and Environmental Protection, 2021, 153: 11–18. DOI: 10.1016/j.psep.2021.07.010.
    [5] 曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.

    CAO Y, GUO J, HU K L, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.
    [6] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [7] 陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.

    CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
    [8] SWAIN M R, FILOSO P A, SWAIN M N. An experimental investigation into the ignition of leaking hydrogen [J]. International Journal of Hydrogen Energy, 2007, 32(2): 287–295. DOI: 10.1016/j.ijhydene.2006.06.041.
    [9] PANDA P P, HECHT E S. Ignition and flame characteristics of cryogenic hydrogen releases [J]. International Journal of Hydrogen Energy, 2017, 42(1): 775–785. DOI: 10.1016/j.ijhydene.2016.08.051.
    [10] FRIEDRICH A, BREITUNG W, STERN G, et al. Ignition and heat radiation of cryogenic hydrogen jets [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17589–17598. DOI: 10.1016/j.ijhydene.2012.07.070.
    [11] KOBAYASHI H, MUTO D, DAIMON Y, et al. Experimental study on cryo-compressed hydrogen ignition and flame [J]. International Journal of Hydrogen Energy, 2020, 45(7): 5098–5109. DOI: 10.1016/j.ijhydene.2019.12.091.
    [12] MOGI T, HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 45–51. DOI: 10.1016/j.jlp.2008.08.006.
    [13] GUO J, WANG C J, LI M H, et al. Experimental study on spark ignition of non-premixed hydrogen jets [J]. Journal of Thermal Science, 2014, 23(4): 354–358. DOI: 10.1007/s11630-014-0717-3.
    [14] 闫伟阳, 潘旭海, 汪志雷, 等. 高压氢气泄漏自燃形成喷射火的实验研究 [J]. 爆炸与冲击, 2019, 39(11): 115402. DOI: 10.11883/bzycj-2018-0394.

    YAN W Y, PAN X H, WANG Z L, et al. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire [J]. Explosion and Shock Waves, 2019, 39(11): 115401. DOI: 10.11883/bzycj-2018-0394.
    [15] AHMED S F, MASTORAKOS E. Spark ignition of lifted turbulent jet flames [J]. Combustion and Flame, 2006, 146(1/2): 215–231. DOI: 10.1016/j.combustflame.2006.03.007.
    [16] AHMED S F, BALACHANDRAN R, MASTORAKOS E. Measurements of ignition probability in turbulent non-premixed counterflow flames [J]. Proceedings of the Combustion Institute, 2007, 31(1): 1507–1513. DOI: 10.1016/j.proci.2006.07.089.
    [17] GRUNE J, SEMPERT K, KUZNETSOV M, et al. Experimental study of ignited unsteady hydrogen jets into air [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2497–2504. DOI: 10.1016/j.ijhydene.2010.04.152.
    [18] ROYLE M, WILLOUGHBY D B. Consequences of catastrophic releases of ignited and unignited hydrogen jet releases [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2688–2692. DOI: 10.1016/j.ijhydene.2010.03.141.
    [19] GRUNE J, SEMPERT K, KUZNETSOV M, et al. Experimental study of ignited unsteady hydrogen releases from a high pressure reservoir [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6176–6183. DOI: 10.1016/j.ijhydene.2013.08.076.
    [20] BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas [J]. Combustion Science and Technology, 1984, 36(5/6): 249–261. DOI: 10.1080/00102208408923739.
    [21] BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets [J]. Combustion Science and Technology, 1987, 52(1/2/3): 161–171. DOI: 10.1080/00102208708952575.
    [22] SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames [J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081–2093. DOI: 10.1016/j.ijhydene.2006.08.037.
    [23] DUAN Q L, XIAO H H, GAO W, et al. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air [J]. Fuel, 2016, 181: 811–819. DOI: 10.1016/j.fuel.2016.05.066.
    [24] TAKENO K, OKABAYASHI K, KOUCHI A, et al. Dispersion and explosion field tests for 40 MPa pressurized hydrogen [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2144–2153. DOI: 10.1016/j.ijhydene.2007.04.018.
    [25] KIKUKAWA S, YAMAGA F, MITSUHASHI H. Risk assessment of Hydrogen fueling stations for 70 MPa FCVs [J]. International Journal of Hydrogen Energy, 2008, 33(23): 7129–7136. DOI: 10.1016/j.ijhydene.2008.08.063.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  2
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2024-01-03
  • 网络出版日期:  2024-04-17

目录

    /

    返回文章
    返回