火灾条件下开敞空间LPG储罐的BLEVE试验

段仁武 李展 颜海春 方秦

段仁武, 李展, 颜海春, 方秦. 火灾条件下开敞空间LPG储罐的BLEVE试验[J]. 爆炸与冲击, 2023, 43(12): 125402. doi: 10.11883/bzycj-2023-0057
引用本文: 段仁武, 李展, 颜海春, 方秦. 火灾条件下开敞空间LPG储罐的BLEVE试验[J]. 爆炸与冲击, 2023, 43(12): 125402. doi: 10.11883/bzycj-2023-0057
DUAN Renwu, LI Zhan, YAN Haichun, FANG Qin. Experimental study of LPG storage tank BLEVE in unconfined space under fire[J]. Explosion And Shock Waves, 2023, 43(12): 125402. doi: 10.11883/bzycj-2023-0057
Citation: DUAN Renwu, LI Zhan, YAN Haichun, FANG Qin. Experimental study of LPG storage tank BLEVE in unconfined space under fire[J]. Explosion And Shock Waves, 2023, 43(12): 125402. doi: 10.11883/bzycj-2023-0057

火灾条件下开敞空间LPG储罐的BLEVE试验

doi: 10.11883/bzycj-2023-0057
基金项目: 国家自然科学基金(52278544,52008392)
详细信息
    作者简介:

    段仁武(1998- ),男,硕士,drw0079@163.com

    通讯作者:

    李 展(1990- ),男,博士,副教授,lz.9008@163.com

  • 中图分类号: O381; X932

Experimental study of LPG storage tank BLEVE in unconfined space under fire

  • 摘要: 为研究火灾条件下开敞空间液化石油气(liquefied petroleum gas, LPG)储罐沸腾液体膨胀蒸汽爆炸(boiling liquid expansion vapor explosion,BLEVE)的荷载特征及爆炸波传播规律,研制了带滤波片的储罐爆炸试验装置,开展了小尺寸LPG储罐BLEVE试验,分析了LPG储罐的BLEVE过程及超压荷载特征,讨论了滤波片、LPG质量、储罐形状等因素对爆炸超压的影响,总结了已有BLEVE超压荷载的简化计算模型,对比试验数据与简化模型预测结果,给出了简化计算模型的适用范围。研究结果表明:次生蒸气云爆炸对开敞空间BLEVE超压荷载影响有限;BLEVE超压荷载峰值随爆源中心距离的增加而减小,随储存介质质量的增大而增大;在BLEVE超压荷载简化计算模型中,使用Brode模型计算爆炸能量最为保守,Planas模型仅能较准确地预测大尺度试验的结果,Birk模型则能较准确地预测大、中、小尺度试验的结果,但其结果略低于实验结果;规范建议的超压荷载计算方法中,Baker-Tang爆炸曲线法预测效果优于TNT当量法。
  • 图  1  储罐尺寸

    Figure  1.  Dimensions of LPG tanks

    图  2  试验布置图

    Figure  2.  Test setup

    图  3  火灾模拟系统

    Figure  3.  Fire simulation system

    图  4  储罐破坏形态

    Figure  4.  Failure modes of LPG tanks

    图  5  LPG爆炸过程

    Figure  5.  LPG explosion processes

    图  6  LPG储罐爆炸超压时程曲线对比(有/无火球)

    Figure  6.  Overpressure-time history profiles with and without fireball

    图  7  典型工况下LPG储罐爆炸的超压时程曲线

    Figure  7.  Overpressure-time history profiles of typical LPG tank explosion

    图  8  罐体质量对超压峰值的影响

    Figure  8.  Effect of LPG tank mass on overpressure

    图  9  罐体形状对超压峰值的影响

    Figure  9.  Effects of LPG tank shapes on overpressure

    图  10  不同模型[6,8-12]能量预测值的对比

    Figure  10.  Comparison of energy predictions by different models[6,8-12]

    图  11  超压峰值预测结果[6,8-13,15](TNT当量法)

    Figure  11.  Predictions of overpressure peak[6,8-13,15] (TNT equivalent method)

    图  12  BLEVE超压分布(TNT当量法)

    Figure  12.  BLEVE overpressure distribution (TNT equivalent method)

    图  13  超压峰值预测结果[6,8-13,15](Baker-Tang爆炸曲线法)

    Figure  13.  Predictions of overpressure peak[6,8-13,15] (Baker-Tang blast curve method)

    图  14  BLEVE超压分布(Baker-Tang爆炸曲线法)

    Figure  14.  BLEVE overpressure distribution (Baker-Tang blast curve method)

    表  1  试验工况

    Table  1.   Test conditions

    工况 滤波片 储罐质量/g 储罐体积/cm3 储罐长径比(L/D 储罐形状
    T1 230 660 3.00 长罐
    T2 110 430 2.00 长罐
    T3 450 1380 1.32 扁罐
    T4 230 855 0.82 扁罐
    T5 110 445 0.78 扁罐
    T6 230 660 3.00 长罐
    T7 110 430 2.00 长罐
    T8 450 1380 1.32 扁罐
    T9 230 855 0.82 扁罐
    T10 110 445 0.78 扁罐
    下载: 导出CSV

    表  2  测试结果

    Table  2.   Testing results

    工况储罐是否产生火球极限压力/MPa压力峰值/kPa
    P1P2P3P4P5P6
    T1L230g1.881.260.610.330.360.300.26
    T2L110g1.701.220.860.310.360.340.25
    T3F450g2.024.181.631.041.271.140.75
    T4F230g1.614.181.631.121.411.230.92
    T5F110g2.172.711.000.660.750.660.54
    T6L230g1.881.520.420.370.520.370.32
    T7L110g1.700.840.300.280.280.230.14
    T8F450g2.024.101.831.141.321.270.70
    T9F230g1.614.601.601.071.361.250.76
    T10F110g2.172.500.940.660.800.730.52
    下载: 导出CSV

    表  3  液相与气相能量对比

    Table  3.   Comparison of liquid and vapor energies

    储罐 储罐体积/cm3 气体填充率/% mL/g mV/g EL/kJ EV/kJ E/kJ
    L230g 660 83 222 8 65.40 1.19 66.60
    L110g 430 58 101 9 28.08 1.28 29.36
    F450g 1380 69 428 22 131.41 3.36 134.77
    F230g 855 54 214 16 57.65 2.22 59.87
    F110g 445 50 97 13 31.03 2.04 33.17
     注: (1)液体和气体能量计算公式:E=m(u1-u2)。(2)$m$为液体或气体质量,$ {m_{\text{L}}} $为液体质量,${m_{\text{V}}}$为气体质量,${E_{\text{L}}}$为液相爆炸能量,${E_{\text{V}}}$为气相爆炸总能量,$E$为爆炸总能量,$ {u_{\text{1}}} $为爆炸前总内能,${u_{\text{2}}}$为爆炸后总内能。
    下载: 导出CSV

    表  4  能量计算公式

    Table  4.   Energy calculation method

    来源 能量来源 简化过程 气体行为 折减系数β 能量计算公式
    Brode[8] 气相 恒容过程 理想气体 0.4 $ E = pV\ln \left( {\dfrac{p}{{{p_0}}}} \right) $
    Smith[9] 气相 等温过程 理想气体 0.4 $ E = pV\ln \left( {\dfrac{p}{{{p_0}}}} \right) $
    Prugh[10] 气相 等熵膨胀 理想气体 0.4 $E = \dfrac{{pV}}{{\gamma - 1}}\left[ {1 - {{\left( {\dfrac{{{p_0}}}{p}} \right)}^{^{(\gamma - 1)/\gamma }}}} \right]$
    CCPS[11] 液相+气相 等熵膨胀 真实气体 0.4 $ E = {m_{{\text{L0}}}}{u_{{\text{L0}}}} + {m_{{\text{V0}}}}{u_{{\text{V0}}}} - {m_{\text{L}}}{u_{\text{L}}} - {m_{\text{V}}}{u_{\text{V}}} $
    Planas-Cuchi[12] 液相+气相 绝热不可逆过程 真实气体 0.4 $ E = {m_{\text{T}}}{u_{{\text{L0}}}} - \left( {{u_{{\text{L0}}}} - {u_{{\text{V0}}}}} \right){m_{\text{T}}}x - U $
    Casal[13] 液相 等熵膨胀和绝热不可逆过程 真实气体 0.05/0.14 $E = \beta {m_{\text{L}}}\left( {{h_{\text{L}}} - {h_{{\text{L0}}}}} \right)$
    Genova[15] 液相 等熵膨胀 真实气体 0.07 $ E = \beta {m_{\text{L}}}{c_{{p}}}\Delta T $
    Birk[6] 气相 等熵膨胀 真实气体 1 $E = {m_{\text{V}}}\left( {{u_{\text{1}}} - {u_{\text{2}}}} \right)$
    下载: 导出CSV
  • [1] 侯淑雅, 王智, 栾笑阳, 等. 浙江温岭槽罐车爆炸事故分析 [J]. 南京工业大学学报(自然科学版), 2021, 43(2): 144–149. DOI: 10.3969/j.issn.1671-7627.2021.02.002.

    HOU S Y, WANG Z, LUAN X Y, et al. Analysis of tank truck explosion accident in Wenling, Zhejiang Province [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2021, 43(2): 144–149. DOI: 10.3969/j.issn.1671-7627.2021.02.002.
    [2] LABOUREUR D, HEYMES F, LAPEBIE E, et al. BLEVE overpressure: multiscale comparison of blast wave modeling [J]. Process Safety Progress,, 2015, 33(3): 274–284. DOI: 10.1002/prs.11626.
    [3] STAWCZYK J. Experimental evaluation of LPG tank explosion hazards [J]. Journal of Hazardous Materials, 2003, 96(2/3): 189–200. DOI: 10.1016/S0304-3894(02)00198-X.
    [4] BIRK A M, POIRIER D, DAVISON C. On the response of 500gal propane tanks to a 25% engulfing fire [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 527–541. DOI: 10.1016/j.jlp.2005.12.008.
    [5] BIRK A M, VANDERSTEEN J D J. On the transition from non-BLEVE to BLEVE failure for a 1.8 m3 propane tank [J]. Journal of Pressure Vessel Technology, 2006, 128(4): 648–655. DOI: 10.1115/1.2349579.
    [6] BIRK A M, DAVISON C, CUNNINGHAM M. Blast overpressures from medium scale BLEVE tests [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3): 194–206. DOI: 10.1016/j.jlp.2007.03.001.
    [7] 胡昆, 陈国华, 周志航, 等. 爆炸冲击波作用下化工设备易损性研究评述 [J]. 化工进展, 2019, 38(4): 1634–1645. DOI: 10.16085/j.issn.1000-6613.2018-0756.

    HU K, CHEN G H, ZHOU Z H, et al. Review of the vulnerabilityofchemical equipment subjected to blastwave [J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1634–1645. DOI: 10.16085/j.issn.1000-6613.2018-0756.
    [8] BRODE H L. Blast wave from a spherical charge [J]. Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
    [9] SMITH J M. Introduction to chemical engineering thermodynamics [M]. 5th ed. New York: McGraw-Hill, 1996.
    [10] PRUGH R W. Quantitative evaluation of “BLEVE” hazards [J]. Journal of Fire Protection Engineering, 1991, 3(1): 9–24. DOI: 10.1177/104239159100300102.
    [11] SAFETY C F C P . Guidelines for vapor cloud explosion, pressure vessel burst, BLEVE, and flash fire hazards [M]. 2nd ed. Hoboken: John Wiley & Sons, Inc. , 2010.
    [12] PLANAS-CUCHI E, SALLA J M, CASAL J. Calculating overpressure from BLEVE explosions [J]. Journal of Loss Prevention in the Process Industries, 2004, 17(6): 431–436. DOI: 10.1016/j.jlp.2004.08.002.
    [13] CASAL J, SALLA J M. Using liquid superheating energy for a quick estimation of overpressure in BLEVEs and similar explosions [J]. Journal of Hazardous Materials, 2006, 137(3): 1321–1327. DOI: 10.1016/j.jhazmat.2006.05.001.
    [14] SALLA J M, DEMICHELA M, CASAL J. BLEVE: a new approach to the superheat limit temperature [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 690–700. DOI: 10.1016/j.jlp.2006.04.004.
    [15] GENOVA B, SILVESTRINI M, TRUJILLO F J L. Evaluation of the blast-wave overpressure and fragments initial velocity for a BLEVE event via empirical correlations derived by a simplified model of released energy [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 110–117. DOI: 10.1016/j.jlp.2007.11.004.
    [16] 孔维轩, 刘宁, 林煦淏等. 国内通用水压试验标准内容对比分析 [J]. 环境技术, 2023, 41(7): 153–158. DOI: 10.3969/j.issn.1004-7204.2023.07.030.

    KONG W X, LIU N, LIN X H, et al. Comparative analysis of domestic general hydraulic test standards [J]. Environmental Technology, 2023, 41(7): 153–158. DOI: 10.3969/j.issn.1004-7204.2023.07.030.
    [17] KINNEY G F, GRAHAM K J. Explosives shocks in air [M]. 2nd ed. Berlin: Springer, 1985.
    [18] BAKER W E, COX P A, WESTINE P S, et al. Explosion hazards and evaluation [M]. Amsterdam: Elsevier, 2012.
    [19] HEMMATIAN B, PLANAS E, CASAL J. Comparative analysis of BLEVE mechanical energy and overpressure modelling [J]. Process Safety and Environmental Protection, 2017, 106: 138–149. DOI: 10.1016/j.psep.2017.01.007.
    [20] BUBBICO R, MARCHINI M. Assessment of an explosive LPG release accident: a case study [J]. Journal of Hazardous Materials, 2008, 155(3): 558–565. DOI: 10.1016/j.jhazmat.2007.11.097.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  38
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-05-06
  • 网络出版日期:  2023-10-16
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回