水动力作用下流冰撞击闸墩的动力响应研究

杨腾腾 贡力 董洲全 杜云飞 崔越

杨腾腾, 贡力, 董洲全, 杜云飞, 崔越. 水动力作用下流冰撞击闸墩的动力响应研究[J]. 爆炸与冲击, 2023, 43(12): 123901. doi: 10.11883/bzycj-2023-0113
引用本文: 杨腾腾, 贡力, 董洲全, 杜云飞, 崔越. 水动力作用下流冰撞击闸墩的动力响应研究[J]. 爆炸与冲击, 2023, 43(12): 123901. doi: 10.11883/bzycj-2023-0113
YANG Tengteng, GONG Li, DONG Zhouquan, DU Yunfei, CUI Yue. Dynamic response of flowing ice colliding with a sluice pier under hydrodynamic action[J]. Explosion And Shock Waves, 2023, 43(12): 123901. doi: 10.11883/bzycj-2023-0113
Citation: YANG Tengteng, GONG Li, DONG Zhouquan, DU Yunfei, CUI Yue. Dynamic response of flowing ice colliding with a sluice pier under hydrodynamic action[J]. Explosion And Shock Waves, 2023, 43(12): 123901. doi: 10.11883/bzycj-2023-0113

水动力作用下流冰撞击闸墩的动力响应研究

doi: 10.11883/bzycj-2023-0113
基金项目: 国家自然科学基金(51969011);甘肃省科技计划资助项目(21JR7RA301);甘肃省黄河水环境重点实验室开放基金(21YRWEK003);甘肃省教育厅优秀研究生“创新之星”项目(2023CXZX-600)
详细信息
    作者简介:

    杨腾腾(1997- ),男,硕士研究生,2680673647@qq.com

    通讯作者:

    贡 力(1977- ),男,博士,教授,博士生导师,gongl@mail.lzjtu.cn

  • 中图分类号: O352; TV672

Dynamic response of flowing ice colliding with a sluice pier under hydrodynamic action

  • 摘要: 高寒地区河冰撞击河道的闸墩结构会产生极端冰载荷和冰激振动,水的动力效应使得碰撞过程更加复杂。采用任意拉格朗日-欧拉流固耦合方法,考虑作用在流冰和闸墩表面的流体力,建立了水-冰-闸墩耦合模型,探究了偶然极端条件下冰-闸墩碰撞的力学特性,设计了冰-砼碰撞实验。结果表明:冰-砼碰撞实验中,撞击力的模拟结果与实验结果吻合良好;对流固耦合的水动力效应分析发现,水-冰-闸墩耦合模型能够体现水的流体特性,在流冰撞击闸墩近场逼近过程中,初始时刻水的动力效应能够增加流冰的动能,撞击楔入闸墩过程中,水介质形成一个瞬态高压力场,产生水垫效应吸收冰体部分动能,从而抑制流冰运动;在不同流冰体积和压缩强度工况下,闸墩结构所承受的冰力随着流冰体积的增大而增大,流冰压缩强度对冰力的影响较小,流冰损伤与闸墩结构响应主要集中在碰撞接触区,流冰撞击闸墩结构引起冰激振动,流冰体积对闸墩振动加速度的影响较大,相同体积的流冰随着压缩强度的增大,振动幅值差异不明显,表明流冰体积是影响冰-闸墩碰撞的关键参数。
  • 图  1  黄河冰凌撞击拦河闸

    Figure  1.  The Yellow River ice hit the barrage

    图  2  水平冰-闸墩碰撞有限元模型

    Figure  2.  Horizontal ice-sluice pier collision finite element model

    图  3  静水压力

    Figure  3.  Hydrostatic pressure

    图  4  冰-砼碰撞测试实验装置

    Figure  4.  Ice-concrete crash experimental rig

    图  5  最大等效应力云图

    Figure  5.  Contour of the maximum effective stress

    图  6  模拟和实验得到的撞击过程的应力时程曲线

    Figure  6.  Stress time history curves of impact processobtained by simulation and experiment

    图  7  不同冰厚下模拟与实验最大应力的对比

    Figure  7.  Comparison of simulated and experimental maximum stresses for different ice thicknesses

    图  8  不同时刻水流形态变化和y方向应变

    Figure  8.  Changes in water flow pattern and y-strain of water mediam at different times

    图  9  不同时刻的水流速度和冰速

    Figure  9.  Water velocity and ice velocity at different times

    图  10  不同工况下冰-闸墩撞击力曲线

    Figure  10.  Ice-sluice pier impact force curves under different working conditions

    图  11  冰-水耦合压力曲线

    Figure  11.  Ice-water coupling pressure curve

    图  12  不同体积和压缩强度下的力-时间历程

    Figure  12.  Force-time histories under different volumes and compression strengths

    图  13  不同体积和压缩强度与撞击力的关系

    Figure  13.  Relationships of the volume and compressive strength of ice with collision force

    图  14  不同体积和压缩强度工况下冰激振动的加速度-时间历程

    Figure  14.  Acceleration-time histories of ice-excited vibration under different volume and compression strength conditions

    图  15  流冰损伤和闸墩响应等效应力

    Figure  15.  Flowing ice damage and contours of pier response equivalent stress

    表  1  闸墩材料模型参数[21]

    Table  1.   Material parameters of sluice pier[21]

    混凝土材料参数
    密度/(kg·m–3 弹性模量/GPa 泊松比 初始抗拉极限/MPa 抗剪极限/MPa 断裂韧度/(N·m–1 剪切保持力
    2 500 30 0.2 4.02 21 0.14 0.03
    混凝土材料参数 钢筋材料参数
    体积黏度 压屈应力/MPa 弹性模量/GPa 屈服应力/MPa 硬化模量/GPa 失效应变
    0.72 42 200 335 10 0.75
    下载: 导出CSV

    表  2  冰材料模型参数

    Table  2.   Material parameters of ice

    密度/(kg·m–3 剪切模量/GPa 屈服应力/MPa 塑性硬化模量/GPa 体积模量/GPa 失效应变 截断应力/MPa
    910 2.2 2.1 4.26 5.26 7.69×10–4 –4.0
    下载: 导出CSV

    表  3  水和空气介质材料参数

    Table  3.   Material parameters of water and air media

    流体介质 密度/(kg·m–3 截断压力/Pa 黏度系数/(N·s·m–2 C0 C1 C2 C3 C4 C5 E0/MPa V0
    空气 1.184 5 –10 1.844×10−5 0 0 0 0 0.4 0.4 0.253 1.0
    998.21 –1.0×10−5 1.790×10−3 1.0133×105 2.25×109 1.0
    下载: 导出CSV

    表  4  流冰-闸墩碰撞工况

    Table  4.   Flowing ice -pier collision conditions

    工况 冰厚/m 冰温/℃ 冰速/(m·s–1 冰体积/m3 冰压缩强度/MPa
    1 0.3 –8 1.5 7.2 2.186
    2 0.3 –8 1.5 14.4 2.186
    3 0.3 –8 1.5 28.8 2.186
    4 0.3 –8 1.5 64.8 2.186
    5 0.3 –8 1.5 115.2 2.186
    6 0.3 –2 1.5 64.8 1.123
    7 0.3 –5 1.5 64.8 1.825
    8 0.3 –8 1.5 64.8 2.186
    9 0.3 –14 1.5 64.8 2.615
    10 0.3 –20 1.5 64.8 2.889
    下载: 导出CSV
  • [1] YANG X, PAVELSKY T M, ALLEN G H. The past and future of global river ice [J]. Nature, 2020, 577: 69–73. DOI: 10.1038/s41586-019-1848-1.
    [2] ROKAYA P, BUDHATHOKI S, LINDENSCHMIDT K E. Trends in the timing and magnitude of ice-jam floods in Canada [J]. Scientific Reports, 2018, 8(1): 5834. DOI: 10.1038/s41598-018-24057-z.
    [3] 郭新蕾, 王涛, 付辉, 等. 河渠冰水力学研究进展和趋势 [J]. 力学学报, 2021, 53(3): 655–671. DOI: 10.6052/0459-1879-20-407.

    GUO X L, WANG T, FU H, et al. Progress and trend in the study of river ice hydraulics [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 655–671. DOI: 10.6052/0459-1879-20-407.
    [4] 贡力, 杨腾腾, 靳春玲, 等. 水-空气耦合介质中冰载荷对闸墩的撞击影响研究 [J/OL]. 工程力学, (2023-04-03)[2022-11-28]. DOI: 10.6052/j.issn.1000-4750.2022.05.0491.

    GONG L, YANG T T, JIN C L, et al. Research on collision of ice loads on the sluice pier in water-air coupling medium [J/OL]. Engineering Mechanics, (2023-04-03)[2022-11-28]. DOI: 10.6052/j.issn.1000-4750.2022.05.0491.
    [5] WU C G, WEI Y M, JIN J L, et al. Comprehensive evaluation of ice disaster risk of the Ningxia-Inner Mongolia reach in the upper Yellow River [J]. Natural Hazards, 2015, 75(2): 179–197. DOI: 10.1007/s11069-014-1308-z.
    [6] 杨开林. 长距离输水水力控制的研究进展与前沿科学问题 [J]. 水利学报, 2016, 47(3): 424–435. DOI: 10.13243/j.cnki.slxb.20150824.

    YANG K L. Review and frontier scientific issues of hydraulic control for long distance water diversion [J]. Journal of Hydraulic Engineering, 2016, 47(3): 424–435. DOI: 10.13243/j.cnki.slxb.20150824.
    [7] 王娟, 黄樾, 邓宇, 等. 基于数字图像相关方法的黄河冰断裂性能研究 [J]. 水利学报, 2021, 52(9): 1036–1046. DOI: 10.13243/j.cnki.slxb.20201064.

    WANG J, HUANG Y, DENG Y, et al. Research on ice fracture of the Yellow River performance based on digital image correlation method [J]. Journal of Hydraulic Engineering, 2021, 52(9): 1036–1046. DOI: 10.13243/j.cnki.slxb.20201064.
    [8] WANG Z, SHI H B, LIU X M, et al. Analysis on the ice regime change characteristics in the Inner Mongolia reach of the Yellow River from 1950 to 2010 [J]. Journal of Coastal Research, 2020, 115(S1): 405. DOI: 10.2112/JCR-SI115-115.1.
    [9] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010–2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.

    YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
    [10] JEON S, KIM Y. Numerical simulation of level ice-structure interaction using damage-based erosion model [J]. Ocean Engineering, 2021, 220: 108485. DOI: 10.1016/j.oceaneng.2020.108485.
    [11] CAI W, ZHU L, YU T X, et al. Numerical simulations for plates under ice impact based on a concrete constitutive ice model [J]. International Journal of Impact Engineering, 2020, 143: 103594. DOI: 10.1016/j.ijimpeng.2020.103594.
    [12] GONG L, DONG Z Q, JIN C L, et al. Flow-solid coupling analysis of ice-concrete collision nonlinear problems in the Yellow River Basin [J]. Water, 2023, 15(4): 643. DOI: 10.3390/w15040643.
    [13] ZHOU L, ZONG Z, LI J N. A numerical study of hydrodynamic influence on collision of brash ice with a structural plate [J]. Journal of Hydrodyn, 2022, 34: 43–51. DOI: 10.1007/s42241-022-0004-9.
    [14] YU Z L, AMDAHL J. A numerical solver for coupled dynamic simulation of glacial ice impacts considering hydrodynamic-ice-structure interaction [J]. Ocean Engineering, 2021, 226: 108827. DOI: 10.1016/j.oceaneng.2021.108827.
    [15] KIM J H, KIM Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields [J]. Marine Structures, 2019, 66: 83–105. DOI: 10.1016/j.marstruc.2019.03.002.
    [16] 王帅霖, 刘社文, 季顺迎. 基于GPU并行的锥体导管架平台结构冰激振动DEM-FEM耦合分析 [J]. 工程力学, 2019, 36(10): 28–39. DOI: 10.6052/j.issn.1000-4750.2018.10.0560.

    WANG S L, LIU S W, JI S Y. Coupled discrete-finite element analysis for ice-induced vibration of conical jacket platform based on GPU-BASED parallel algorithm [J]. Engineering Mechanics, 2019, 36(10): 28–39. DOI: 10.6052/j.issn.1000-4750.2018.10.0560.
    [17] 蒋文灿, 程祥珍, 梁斌, 等. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.

    JIANG W C, CHENG X Z, LIANG B, et al. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner [J]. Explosion and Shock Waves, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.
    [18] ERCEG S, ERCEG B, VON BOCK UND POLACH F, et al. A simulation approach for local ice loads on ship structures in level ice [J]. Marine Structures, 2022, 81: 103117. DOI: 10.1016/j.marstruc.2021.103117.
    [19] LSTC. LS-DYNA keyword user’s manual [M]. CA: Livermore Software Technology Corporation (LSTC), 2014.
    [20] CHIQUITO. M, CASTEDO. R, SANTOS. A. P, et al. Numerical modelling and experimental validation of the behaviour of brick masonry walls subjected to blast loading [J]. International Journal of Impact Engineering, 2021, 148: 103760. DOI: 10.1016/j. ijimpeng. DOI: 10.1016/j.ijimpeng.
    [21] 崔堃鹏. 汽车撞击荷载及其作用下高速列车与桥梁系统动力响应与列车运行安全研究 [D]. 北京: 北京交通大学, 2015.

    CUI K P. Research of motor collision loads and dynamic responses of highspeed train-bridge system and running safety evaluation of trains subjected to motor collision loads [D]. Beijing: Beijing Jiaotong University, 2015.
    [22] DENG Y, LI C J, LI Z J, et al. Dynamic and full-time acquisition technology and method of ice data of Yellow River [J]. Sensors, 2021, 22(1): 176. DOI: 10.3390/s22010176.
    [23] SONG M, MA J, HUANG Y. Fluid-structure interaction analysis of ship-ship collisions [J]. Marine Structures, 2017, 55: 121–136. DOI: 10.1016/j.marstruc.2017.05.006.
    [24] YE X D, FAN W, SHA Y Y, et al. Fluid-structure interaction analysis of oblique ship-bridge collisions [J]. Engineering Structures, 2023, 274: 115129. DOI: 10.1016/j.engstruct.2022.115129.
    [25] INCE S T, KUMAR A, PAIK J K. A new constitutive equation on ice materials [J]. Ships and Offshore Structures, 2017, 12(5): 610–623. DOI: 10.1080/17445302.2016.1190122.
    [26] 王庆凯, 张宝森, 邓宇, 等. 黄河冰单轴压缩强度的试验与影响因素探究 [J]. 水利水电技术, 2016, 47(9): 90–94. DOI: 10.13928/j.cnki.wrahe.2016.09.018.

    WANG Q K, ZHANG B S, DENG Y, et al. Study on test of uniaxial compressive strength of ice in Yellow River and its influencing factors [J]. Water Resources and Hydropower Engineering, 2016, 47(9): 90–94. DOI: 10.13928/j.cnki.wrahe.2016.09.018.
    [27] 张健, 王甫超, 刘海冬, 等. 水介质对船冰碰撞结构响应的影响 [J]. 船舶工程, 2019, 41(7): 12–15, 22. DOI: 10.13788/j.cnki.cbgc.2019.07.03.

    ZHANG J, WANG F C, LIU H D, et al. The influence of water medium on the structure response of ship ice collision [J]. Ship Engineering, 2019, 41(7): 12–15, 22. DOI: 10.13788/j.cnki.cbgc.2019.07.03.
    [28] 王鸿, 贡力, 王忠慧, 等. 基于不同碰撞模型的流冰-输水隧洞碰撞动态响应研究 [J]. 水资源与水工程学报, 2021, 32(1): 164–171. DOI: 10.11705/j.issn.1672-643X.2021.01.24.

    WANG H, GONG L, WANG Z H, et al. Dynamic response of drift ice-water tunnel collision based on different collision models [J]. Journal of Water Resources and Water Engineering, 2021, 32(1): 164–171. DOI: 10.11705/j.issn.1672-643X.2021.01.24.
    [29] SONG M, KIM E, AMDAHL J, et al. A comparative analysis of the fluid-structure interaction method and the constant added mass method for ice-structure collisions [J]. Marine Structures, 2016, 49: 58–75. DOI: 10.1016/j.marstruc.2016.05.005.
    [30] LIU Y Z, SHI W, WANG W H, et al. Dynamic analysis of monopile-type offshore wind turbine under sea ice coupling with fluid-structure interaction [J]. Frontiers in Marine Science, 2022, 9: 12. DOI: 10.3389/fmars.2022.839897.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  45
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-08-30
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回