UHMWPE薄板抗轻武器杀伤元斜侵彻研究

宋福琛 郭辉 陈玉

宋福琛, 郭辉, 陈玉. UHMWPE薄板抗轻武器杀伤元斜侵彻研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0208
引用本文: 宋福琛, 郭辉, 陈玉. UHMWPE薄板抗轻武器杀伤元斜侵彻研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0208
SONG Fuchen, GUO Hui, CHEN Yu. Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0208
Citation: SONG Fuchen, GUO Hui, CHEN Yu. Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0208

UHMWPE薄板抗轻武器杀伤元斜侵彻研究

doi: 10.11883/bzycj-2023-0208
基金项目: 国家自然科学基金(12272330)
详细信息
    作者简介:

    宋福琛(1997- ),男,硕士研究生,sfc1997277@126.com

    通讯作者:

    郭 辉(1986- ),男,博士,副教授,guohui56789@126.com

  • 中图分类号: O389

Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo

  • 摘要: 为解决高性能轻质防弹插板受轻武器杀伤元侵彻防护问题,对超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)层压薄板进行了侵彻实验,分析了侵彻后UHMWPE薄板的变形失效特征并对比了轻武器杀伤元的破坏形貌。利用有限元软件LS-DYNA建立了UHMWPE薄板抗轻武器杀伤元侵彻数值模型,通过靶板破坏形态、凹陷深度以及弹头变形的实验结果对数值模型的有效性进行了验证。在此基础上,通过数值模拟方法研究了UHMWPE薄板受弹体斜侵彻失效模式,揭示了3种轻武器杀伤元侵彻下入射角度对跳弹现象和UHMWPE薄板破坏形态的影响规律。结果表明:7.62 mm×25 mm的钢芯弹与7.62 mm×39 mm的普通弹(钢芯)斜侵彻UHMWPE薄板的跳弹角均位于45°~50°范围内;7.62 mm×25 mm的铅芯弹在入射角大于70°时才可完整跳出,其余均以破损弹片形式飞溅,弹体破坏会对跳弹状况产生影响;入射角较小时,斜侵彻子弹会产生面积较大且具有一定深度的弹坑,连续击发的下一枚子弹会更容易击穿弹坑薄弱处的纤维板,斜侵彻作用对薄板受二次侵彻产生不利影响;入射角较大时,子弹会较完整地发生跳弹并具有高剩余速度,会对人员产生二次杀伤。研究成果可为UHMWPE薄板用于轻量化军用防弹插板设计提供参考。
  • 图  1  侵彻实验布置示意图

    Figure  1.  Schematic diagram layout of the penetration experiment

    图  2  各靶板迎弹面着弹与背弹面凹陷情况

    Figure  2.  Impact and depression of each target plate on the face of the target and on the back of the target

    图  3  子弹侵彻UHMWPE靶板过程

    Figure  3.  Process of bullet penetrating UHMWPE laminates

    图  4  UHMWPE靶板受子弹侵彻后剖面

    Figure  4.  Cross section of UHMWPE target plate after bullet penetration

    图  5  51-B式7.62 mm×25 mm钢芯弹侵彻后的破坏形态

    Figure  5.  Damage patterns of type 51-B 7.62 mm×25 mm steel core projectile after penetration

    图  6  51式7.62 mm×25 mm铅芯弹侵彻后的破坏形态

    Figure  6.  Damage patterns of type 51 7.62 mm×25 mm lead core projectile after penetration

    图  7  7.62 mm×39 mm普通弹(钢芯)侵彻后的破坏形态

    Figure  7.  Destruction patterns after penetration of 7.62 mm×39 mm ordinary ammunition (steel core)

    图  8  3组UHMWPE薄板侵彻后背弹面的鼓包变形

    Figure  8.  Three sets of UHMWPE thin panels invading the back bomb dumper to deform

    图  9  UHMWPE靶板数值模拟正交铺层单元与整体模型

    Figure  9.  UHMWPE target plate numerical simulation orthogonal layup unit and global model

    图  10  霍普金森杆实验与对应模拟模型标定的内聚力单元参数

    Figure  10.  Hopkinson rod experiments and corresponding simulations to calibrate cohesion unit parameters

    图  11  7.62 mm×25 mm钢、铅芯弹与7.62 mm×39 mm普通弹模型与实弹对比

    Figure  11.  Comparison of 7.62 mm×25 mm steel and lead-core bullets and 7.62 mm×39 mm ordinary bullets in model and live rounds

    图  12  靶板着弹处数值模拟与实验剖面破坏形态的对比

    Figure  12.  Comparison between simulation and experimental section destruction of the target board destruction of the form

    图  13  实验(左)与数值模拟(右)侵彻后的弹头变形破坏情况对比

    Figure  13.  Comparison of experimental (left) and numerical simulation (right) of warhead deformation damage after penetration

    图  14  不同入射角下3种仿真子弹的破坏形貌

    Figure  14.  Damage morphology of three simulated bullets at different angles of incidence

    图  15  4种典型入射角下 GA141 2 级靶板的破坏形貌

    Figure  15.  Damage morphology of GA141 grade 2 target plate at four incidence angles

    图  16  4种典型入射角下 GA141 4 级靶板的破坏形貌

    Figure  16.  Damage morphology of GA141 grade 4 target plate at four angles of incidence

    图  17  4种典型入射角下 GA141 5 级靶板的破坏形貌

    Figure  17.  Damage morphology of GA141 grade 5 target plate at four angles of incidence

    图  18  入射角为45°时7.62 mm×39 mm普通弹水平与法向速度分量衰减

    Figure  18.  Decay of the horizontal and normal velocity components of a 7.62 mm×39 mm rifle bullet at an angle of incidence of 45°

    图  19  入射角为50°时7.62 mm×39 mm普通弹跳出靶板过程

    Figure  19.  Process of a 7.62 mm×39 mm ordinary bullet bouncing off the target plate at an angle of incidence of 50°

    表  1  侵彻实验工况

    Table  1.   Invasion of experimental conditions

    工况靶板尺寸/mm靶板面密度/(kg·m−2)子弹规格子弹初速/(m·s−1)
    1299×249×6.216.1251式7.62 mm×25 mm手枪铅芯弹445±10
    2303×250×10.3110.2651-B式7.62 mm×25 mm冲锋枪钢芯弹515±10
    3303×250×19.4519.1856式7.62 mm×39 mm步枪普通弹725±10
    下载: 导出CSV

    表  2  靶板凹陷深度

    Table  2.   Depression depth of target plate

    射序靶板凹陷深度/mm
    工况1工况2工况3
    1161416
    22099
    3161020
    417114
    5181218
    6201418
    下载: 导出CSV

    表  3  UHMWPE靶板材料性能[19]

    Table  3.   Material properties of UHMWPE target plate[19]

    Ea/GPa Eb/GPa Ec/GPa νba νca νcb Gab/MPa Gbc/MPa Gca/MPa
    30.7 30.7 1.97 0.008 0.044 0.044 670 1 970 670
    η XT/GPa YT/GPa YC/GPa SN/MPa SYZ/MPa SZX/MPa α
    0 3 3 2.5 950 950 950 0.5
    下载: 导出CSV

    表  4  内聚力单元参数

    Table  4.   Parameters of cohesion unit

    密度/(g·cm−3) 法向刚度/(N·mm−3) 面内刚度/(N·mm−3) $G_{ {\text{Ⅰ}} {\text{C}}} $/(J·mm−2) $G_{ {\text{Ⅱ}} {\text{C}}} $/(J·mm−2) T S
    2.0 1.0×106 1.0×106 0.28 0.495 62 110
    下载: 导出CSV

    表  5  侵彻弹丸各部分材料的Johnson-Cook本构参数

    Table  5.   Johnson-Cook intrinsic parameters of the material of the penetrating projectile parts

    弹头构成 密度/(g·cm−3) 弹性模量/GPa 泊松比 A/MPa B/MPa n c
    镀铜钢护套 7.85 210 0.31 448.20 303.4 0.15 0.003 33
    钢弹芯 7.85 210 0.31 234.34 413.8 0.25 0.110 00
    铅弹芯/铅壳 10.10 13.8 0.42 10.30 41.3 0.21 0.003 33
    弹头构成 m d1 d2 d3 d4 d5
    镀铜钢护套 1.03 2.250 0.000 5 −3.6 −0.012 3 0
    钢弹芯 1.03 5.625 0.3 −7.2 −0.012 3 0
    铅弹芯/铅壳 1.03 2.500 0 0 0 0
    下载: 导出CSV

    表  6  网格尺寸敏感性验算

    Table  6.   Mesh size sensitivity calculation

    网格尺寸/mm实验结果/mm模拟结果/mm
    1.018.0010.32
    0.518.0016.31
    0.418.0017.03
    0.318.0017.17
    0.218.0017.21
    下载: 导出CSV

    表  7  UHMWPE靶弹着点凹深数值模拟结果与实验结果的对比

    Table  7.   Comparison between simulation and experimental results of concave depth at impact point of UHMWPE target

    靶板类型实验平均凹陷深度/mm模拟平均凹陷深度/mm误差/%
    GA141 2级靶板17.8316.616.8
    GA141 4级靶板11.6711.332.9
    GA141 5级靶板18.0017.174.6
    下载: 导出CSV
  • [1] 赵美琪, 张乐天, 叶纯麟, 等. 超高分子量聚乙烯高抗冲性能优化研究及进展 [J]. 化工新型材料, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011.

    ZHAO M Q, ZHANG L T, YE C L, et al. Progress on optimization of high impact resistance of UHMWPE [J]. New Chemical Materials, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011.
    [2] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析 [J]. 复合材料学报, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002.

    YE Z R, LUO L, PAN H Y, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites [J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002.
    [3] PEINADO J, LIU L J, OLMEDO Á, et al. Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels [J]. Composite Structures, 2022, 286: 115365. DOI: 10.1016/j.compstruct.2022.115365.
    [4] 付杰, 李伟萍, 黄献聪, 等. 新型超高分子量聚乙烯膜材料防弹性能及机理 [J]. 兵工学报, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019.

    FU J, LI W P, HUANG X C, et al. Bullet-proof performance and mechanism of new ultra-high molecular weight polyethylene film [J]. Acta Armamentarii, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019.
    [5] 董彬, 魏汝斌, 王小伟, 等. 高性能有机纤维在防弹复合材料领域应用研究现状 [J]. 复合材料科学与工程, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015.

    DONG B, WEI R B, WANG X W, et al. Review of high performance organic fibers in ballistic composite fields [J]. Composites Science and Engineering, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015.
    [6] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [7] WEI H Y, ZHANG X F, LIU C, et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets [J]. International Journal of Impact Engineering, 2021, 148: 103745. DOI: 10.1016/j.ijimpeng.2020.103745.
    [8] CAO M J, CHEN L, FANG Q. Penetration and perforation characteristics of the novel UHMWPE film laminates by the 7.62 mm standard bullet [J]. Composite Structures, 2023, 308: 116669. DOI: 10.1016/j.compstruct.2023.116669.
    [9] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究 [J]. 爆炸与冲击, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.

    WANG X Q, ZHU X, MEI Z Y, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates [J]. Explosion and Shock Waves, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.
    [10] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.

    WANG Z, CHANG L J, HUANG X Y, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.
    [11] ZHU Y H, LIU K, WEN Y K, et al. Experimental and numerical study on the ballistic performance of ultrahigh molecular weight polyethylene laminate [J]. Polymer Composites, 2021, 42(10): 5168–5198. DOI: 10.1002/PC.26214.
    [12] ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132.
    [13] 贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制 [J]. 复合材料学报, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002.

    JIA N, JIAO Y N, ZHOU Q, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism [J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002.
    [14] 张元豪, 程忠庆, 侯海量, 等. 结构间隙对夹芯式复合装甲结构抗侵彻性能的影响 [J]. 爆炸与冲击, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.

    ZHANG Y H, CHENG Z Q, HOU H L, et al. Influence of structural interspace on anti-penetration performance of sandwich composite armor system [J]. Explosion and Shock Waves, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.
    [15] MO G L, MA Q W, JIN Y X, et al. Delamination process in cross-ply UHMWPE laminates under ballistic penetration [J]. Defence Technology, 2021, 17(1): 278–286. DOI: 10.1016/j.dt.2020.05.001.
    [16] 刘迪, 肖依, 江旭伟, 等. SiC/UHMWPE复合装甲板抗侵彻性能的试验与数值模拟 [J]. 上海大学学报(自然科学版), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037.

    LIU D, XIAO Y, JIANG X W, et al. Anti-penetration capability of SiC/UHMWPE composite armour plates through experimental and numerical simulation [J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037.
    [17] HU P C, YANG H F, ZHANG P, et al. Experimental and numerical investigations into the ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced laminates [J]. Composite Structures, 2022, 290: 115499. DOI: 10.1016/j.compstruct.2022.115499.
    [18] CAO M J, CHEN L, XU R Z, et al. Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness [J]. Composite Structures, 2021, 277: 114638. DOI: 10.1016/j.compstruct.2021.114638.
    [19] QU K F, WU C Q, LIU J, et al. Ballistic performance of multi-layered aluminium and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball [J]. Composite Structures, 2020, 253: 112785. DOI: 10.1016/j.compstruct.2020.112785.
    [20] 季海波, 王昕, 赵振宇, 等. 带攻角平头弹侵彻不同厚度芳纶层合板的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231.

    JI H B, WANG X, ZHAO Z Y, et al. Simulation on penetration of a flat-nosed projectile with attack angle into aramid laminates having varying thickness [J]. Explosion and Shock Waves, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231.
    [21] MEYER C S, CATUGAS I G, GILLESPIE J W JR, et al. Investigation of normal, lateral, and oblique impact of microscale projectiles into unidirectional glass/epoxy composites [J]. Defence Technology, 2022, 18(11): 1960–1978. DOI: 10.1016/j.dt.2021.08.012.
    [22] ZHU Y H, ZHANG X Y, XUE B Y, et al. High-strain-rate compressive behavior of UHMWPE fiber laminate [J]. Applied Sciences, 2020, 10(4): 1505. DOI: 10.3390/app10041505.
    [23] CARRASCO-BALTASAR D, GARCÍA-CASTILLO S, IVAÑEZ I, et al. Modelling of woven CFRP plates subjected to oblique high-velocity impact and membrane loads [J]. Composite Structures, 2023, 303: 116344. DOI: 10.1016/j.compstruct.2022.116344.
    [24] LÓPEZ-PUENTE J, ZAERA R, NAVARRO C. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 374–387. DOI: 10.1016/j.compositesa.2007.10.004.
    [25] HAZELL P J, KISTER G, STENNETT C, et al. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 866–874. DOI: 10.1016/j.compositesa.2008.01.007.
    [26] FAWAZ Z, ZHENG W, BEHDINAN K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours [J]. Composite Structures, 2004, 63(3/4): 387–395. DOI: 10.1016/S0263-8223(3)00187-9.
    [27] O’MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates [J]. International Journal of Impact Engineering, 2015, 86: 249–264. DOI: 10.1016/j.ijimpeng.2015.08.012.
    [28] 胡年明, 朱锡, 侯海量, 等. 高速破片侵彻下高分子聚乙烯层合板的弹道极限估算方法 [J]. 中国舰船研究, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009.

    HU N M, ZHU X, HOU H L, et al. Estimating method for the ballistic limit of ultra-high molecular weight polyethylene fiber-reinforced laminates under high-velocity fragment penetration [J]. Chinese Journal of Ship Research, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009.
    [29] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. DOI: 10.1016/j.ceramint.2022.05.088.
    [30] LÄSSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations [J]. International Journal of Impact Engineering, 2015, 75: 110–122. DOI: 10.1016/j.ijimpeng.2014.07.004.
    [31] MALIK M A A. Experimental and numerical study on the mechanical properties of adhesive joints under impact loads using Ls-Dyna [D]. Di Torino: Politecnico di Torino, 2021: 17–30.
    [32] CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements [J]. Composite Structures, 2018, 192: 300–309. DOI: 10.1016/j.compstruct.2018.02.072.
    [33] JOHNSON W, SENGUPTA A K, GHOSH S K. High velocity oblique impact and ricochet mainly of long rod projectiles: an overview [J]. International Journal of Mechanical Sciences, 1982, 24(7): 425–436. DOI: 10.1016/0020-7403(82)90052-2.
    [34] BØRVIK T, OLOVSSON L, DEY S, et al. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates [J]. International Journal of Impact Engineering, 2011, 38(7): 577–589. DOI: 10.1016/j.ijimpeng.2011.02.001.
    [35] IQBAL M A, GUPTA G, GUPTA N K. 3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles [J]. International Journal of Solids and Structures, 2010, 47(2): 224–237. DOI: 10.1016/j.ijsolstr.2009.09.032.
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  7
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回