活性弹丸超高速撞击蜂窝夹芯板双层结构的损伤特性

任思远 武强 张品亮 宋光明 陈川 龚自正 李正宇

任思远, 武强, 张品亮, 宋光明, 陈川, 龚自正, 李正宇. 活性弹丸超高速撞击蜂窝夹芯板双层结构的损伤特性[J]. 爆炸与冲击, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272
引用本文: 任思远, 武强, 张品亮, 宋光明, 陈川, 龚自正, 李正宇. 活性弹丸超高速撞击蜂窝夹芯板双层结构的损伤特性[J]. 爆炸与冲击, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272
REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272
Citation: REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272

活性弹丸超高速撞击蜂窝夹芯板双层结构的损伤特性

doi: 10.11883/bzycj-2023-0272
基金项目: 国家自然科学基金(12202068);国防科工局空间碎片专项(KJSP2023020201, KJSP2020010402)
详细信息
    作者简介:

    任思远(1988- ),男,博士,工程师,yuandermail@yeah.net

    通讯作者:

    武 强(1987- ),男,博士,高级工程师,wuqiang12525@126.com

  • 中图分类号: O385

A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure

  • 摘要: 为了研究蜂窝夹芯板双层结构在活性弹超高速撞击下的损伤特性,制备了PTFE(polytetrafluoroethylene)/Al/Cu柱形活性弹丸,利用二级轻气炮对蜂窝夹芯板双层结构靶开展超高速撞击实验,采用超高速摄像机记录了活性弹撞击蜂窝板的碎片云演化过程,分析了蜂窝板的穿孔特性和结构内部各组件的损伤特征;数值模拟了撞击过程,分析了活性弹丸的超高速侵爆效应,获得了碎片云的膨胀运动规律,揭示了活性弹丸冲击-爆轰耦合效应对靶板的损伤机理。结果表明:活性弹丸在蜂窝板上形成较小的入射孔和较大的出射孔,出射孔直径随着撞击速度的提高而增大;蜂窝夹芯板入射孔、出射孔和蜂窝芯穿孔直径随着活性弹体质量的增加而增大,入射孔直径不受蜂窝板厚度和蜂窝芯胞格直径的影响,出射孔和蜂窝芯穿孔直径随着蜂窝板厚度的增大先增大后减小,随着蜂窝芯胞格直径的增大而增大;活性弹产生具有较高膨胀速度的高温碎片云,其膨胀速度随着撞击速度的提高而提高。活性弹的冲击-爆轰耦合效应增大了结构内部组件的毁伤面积。在2~6 km/s速度范围内,活性弹在蜂窝板上形成的出射孔直径约为铝合金弹的1.3~1.8倍,碎片云的膨胀速度是铝合金弹的1.8~3.2倍。相较于铝合金弹丸,活性弹丸增大了蜂窝夹芯板双层结构内部和后板的毁伤面积,提高了毁伤效能。
  • 图  1  各组分的质量分数对PTFE/Al/Cu活性弹能量密度和密度的影响

    Figure  1.  Influences of mass fraction of Cu on energy density and density of PTFE/Al/Cu

    图  2  烧结温度曲线与制备的PTFE/Al/Cu活性材料试件

    Figure  2.  Sintering temperature curve and sintered specimens of PTFE/Al/Cu reactive material

    图  3  活性材料的动态应力-应变曲线

    Figure  3.  Dynamic stress-strain curves of reactive materials

    图  4  超高速撞击实验的示意图

    Figure  4.  Schematic diagram of hypervelocity impact experiment

    图  5  实验用的活性弹丸和蜂窝板双层结构靶

    Figure  5.  Reactive projectile, sabot, and target used in experiment

    图  6  蜂窝夹芯板入射孔实验结果

    Figure  6.  Front perforation of honeycomb sandwich panels

    图  7  蜂窝夹芯板出射孔实验结果

    Figure  7.  Back perforation of honeycomb sandwich panels

    图  8  实验2中高温碎片云的演化过程

    Figure  8.  Evolution process of high-temperature debris cloud in Exp. 2

    图  9  实验2中后板的破坏结果

    Figure  9.  Damage results of the rear wall in Exp. 2

    图  10  铝合金弹丸撞击蜂窝夹芯板穿孔的数值模拟结果

    Figure  10.  Numerical simulation results of perforation of aluminum alloy projectiles impacting honeycomb sandwich panels

    图  11  活性弹丸撞击蜂窝夹芯板穿孔的数值模拟结果

    Figure  11.  Numerical simulation results of perforation of reactive projectiles impacting honeycomb sandwich panels

    图  12  铝合金弹和活性弹撞击下蜂窝板的动能变化

    Figure  12.  Kinetic energy change of honeycomb sandwich panel impacted by aluminum alloy projectile and reactive projectile

    图  13  弹丸撞击后蜂窝夹芯板穿孔直径与撞击速度的关系

    Figure  13.  Relationship between perforation diameter and impact velocity for honeycomb sandwich panels impacted by projectiles

    图  14  弹体质量、蜂窝夹芯板厚度和蜂窝芯胞格直径对穿孔de 影响

    Figure  14.  Influences of projectile mass, honeycomb sandwich panel thickness and honeycomb core diameter on perforation

    图  15  铝合金弹丸以3 km/s的速度撞击18 mm厚蜂窝夹芯板的温度云图

    Figure  15.  Temperature cloud maps of an 18-mm-thick honeycomb sandwich panel impacted by an aluminum alloy projectile with the velocity of 3 km/s

    图  16  活性弹丸以3 km/s的速度撞击18 mm厚蜂窝夹芯板的温度云图

    Figure  16.  Temperature cloud maps of an 18-mm-thick honeycomb sandwich panel impacted by a reactive projectile with the velocity of 3 km/s

    图  17  弹丸撞击后蜂窝夹芯板的碎片云速度与撞击速度的关系

    Figure  17.  Relationship between the debris cloud velocity and impact velocity for a projectile impacting a honeycomb sandwich panel

    图  18  铝合金弹丸撞击蜂窝夹芯板双层结构的后板损伤结果

    Figure  18.  Damage results of the rear wall of the honeycomb sandwich panel double-layer structures impacted by aluminum alloy projectiles

    图  19  活性弹丸撞击蜂窝夹芯板双层结构的后板损伤结果

    Figure  19.  Damage results of the rear wall of the honeycomb sandwich panel double-layer structures impacted by reactive projectiles

    表  1  实验结果

    Table  1.   Experimental results

    编号 弹体 靶板
    材料 尺寸/mm 速度/(km·s−1) 电子组件位置 损伤
    蜂窝板 后板 电子组件 电缆网组件
    1 PTFE/Al/Cu $ \varnothing$7×7 3.06 蜂窝板背面 穿孔 凹陷 穿孔+烧蚀 烧蚀
    2 PTFE/Al/Cu $\varnothing $7×7 3.13 侧面板 穿孔 凹陷 烧蚀 断裂+烧蚀
    3 PTFE/Al/Cu $\varnothing $7×7 3.10 后板正面 穿孔 凹陷 穿孔+烧蚀 断裂+烧蚀
    下载: 导出CSV

    表  2  Al2024和Al5052的主要材料参数[3, 30]

    Table  2.   Main material parameters of Al2024 and Al5052[3, 30]

    材料 ρ/(g·cm−3) G0/GPa Y0/MPa Ymax/MPa β n γ0 C1/(km·s−1) S1 cV/(J·kg−1·K−1)
    Al2024 2.78 28.6 260 760 310 0.185 2.18 5.328 1.338 863
    Al5052 2.68 27.6 290 680 125 0.1 1.97 5.240 1.34 875
    下载: 导出CSV

    表  3  PTFE/Al/Cu的主要材料参数[3]

    Table  3.   Main material parameters of PTFE/Al/Cu[3]

    $ \rho $/(g$ \cdot $cm−3)A/MPaB/MPanI/μs−1bcdy
    2.761.3128.10.574440.220.2220.6661.6
    下载: 导出CSV

    表  4  数值模拟和实验2结果的对比

    Table  4.   Comparison of numerical simulation and Exp. 2 results

    夹芯板入射孔径 夹芯板出射孔径
    实验2/mm 模拟/mm 误差/% 实验2/mm 模拟/mm 误差/%
    10.1 10.8 6.7 66.5 62.4 6.1
    碎片云膨胀速度 碎片云头部速度
    实验2/(km·s−1) 模拟/(km·s−1) 误差/% 实验2/(km·s−1) 模拟/(km·s−1) 误差/%
    1.61 1.68 4.3 2.53 2.76 9.1
    下载: 导出CSV
  • [1] MOCK W JR, HOLT W H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders [J]. AIP Conference Proceedings, 2006, 845(1): 1097–1100. DOI: 10.1063/1.2263514.
    [2] ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 2129–1156. DOI: 10.1063/1.4729048.
    [3] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials & Design, 2020, 192: 108722. DOI: 10.1016/j.matdes.2020.108722.
    [4] 肖艳文, 徐峰悦, 余庆波, 等. 类钢密度活性材料弹丸撞击铝靶行为实验研究 [J]. 兵工学报, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.

    XIAO Y W, XU F Y, YU Q B, et al. Experimental research on behavior of active material projectile with steel-like density impacting aluminum target [J]. Acta Armamentarii, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.
    [5] NIELSON D B, TRUITT R M, RASMUSSEN N. Low temperature, extrudable, high density reactive materials: US-6962634-B2 [P]. 2005-11-08.
    [6] ZEMAN S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines [J]. Journal of Hazardous Materials, 2006, 132(2/3): 155–164.
    [7] XU F Y, ZHENG Y F, YU Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate [J]. International Journal of Impact Engineering, 2016, 95: 125–132. DOI: 10.1016/j.ijimpeng.2016.05.007.
    [8] XU F Y, LIU S B, ZHENG Y F, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2017, 19(1): 1600350. DOI: 10.1002/adem.201600350.
    [9] XU F Y, YU Q B, ZHENG Y F, et al. Damage effects of double-spaced aluminum plates by reactive material projectile impact [J]. International Journal of Impact Engineering, 2017, 104: 13–20. DOI: 10.1016/j.ijimpeng.2017.01.023.
    [10] 谢剑文, 李沛豫, 王海福, 等. 活性破片撞击油箱毁伤行为与机理 [J]. 兵工学报, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384.

    XIE J W, LI P Y, WANG H F, et al. Damage behaviors and mechanisms of reactive fragments impacting fuel tanks [J]. Acta Armamentarii, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384.
    [11] 肖艳文, 徐峰悦, 郑元枫, 等. 活性材料弹丸碰撞油箱引燃效应实验研究 [J]. 北京理工大学学报, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002.

    XIAO Y W, XU F Y, ZHENG Y F, et al. Experimental study on ignition effects of fuel-filled tank impacted by reactive material projectile [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002.
    [12] 葛超, 余庆波, 卢冠成, 等. 活性芯体子弹对柴油油箱引燃效应及机理研究 [J]. 北京理工大学学报, 2020, 40(10): 1072–1080, 1087. DOI: 10.15918/j.tbit1001-0645.2019.206.

    GE C, YU Q B, LU G C, et al. Igniting effects and mechanism of diesel oil tank by projectile with reactive core [J]. Transactions of Beijing Institute of Technology, 2020, 40(10): 1072–1080, 1087. DOI: 10.15918/j.tbit1001-0645.2019.206.
    [13] 阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.

    YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
    [14] 叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.

    YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
    [15] RAFTENBERG M N, MOCK W JR, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041.
    [16] WANG H F, GENG B Q, GUO H G, et al. The effect of sintering and cooling process on geometry distortion and mechanical properties transition of PTFE/Al reactive materials [J]. Defence Technology, 2020, 16(3): 720–730. DOI: 10.1016/j.dt.2019.10.006.
    [17] FENG B, LI Y C, WU S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors [J]. Materials & Design, 2016, 108: 411–417. DOI: 10.1016/j.matdes.2016.06.125.
    [18] WANG H X, FANG X, FENG B, et al. Influence of temperature on the mechanical properties and reactive behavior of Al-PTFE under quasi-static compression [J]. Polymers, 2018, 10(1): 56. DOI: 10.3390/polym10010056.
    [19] 任耶平, 刘睿, 陈鹏万, 等. Al/PTFE活性材料冲击载荷作用下响应特性研究 [J]. 爆炸与冲击, 2022, 42(6): 063103. DOI: 10.11883/bzycj-2021-0397.

    REN Y P, LIU R, CHEN P W, et al. A study of the response characteristics of Al/PTFE reactive materials under shock loading [J]. Explosion and Shock Waves, 2022, 42(6): 063103. DOI: 10.11883/bzycj-2021-0397.
    [20] 于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.

    YU Z S, FANG X, GAO Z R, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
    [21] 杜宁, 张先锋, 熊玮, 等. 爆炸驱动典型活性材料能量释放特性研究 [J]. 爆炸与冲击, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.

    DU N, ZHANG X F, XIONG W, et al. Energy-release characteristics of typical reactive materials under explosive loading [J]. Explosion and Shock Waves, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.
    [22] 汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.

    WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
    [23] BENNETT L S, SORRELL F Y, SIMONSEN I K, et al. Ultrafast chemical reactions between nickel and aluminum powders during shock loading [J]. Applied Physics Letters, 1992, 61(5): 520–521. DOI: 10.1063/1.107874.
    [24] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [25] XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530.
    [26] ÖZEN İ, ÇAVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores [J]. Thin-Walled Structures, 2020, 156: 106989. DOI: 10.1016/j.tws.2020.106989.
    [27] KANG P, YOUN S K, LIM J H. Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact [J]. Aerospace Science and Technology, 2013, 29(1): 413–425. DOI: 10.1016/j.ast.2013.04.011.
    [28] SIBEAUD J M, THAMIÉ L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037.
    [29] 刘昕, 邓勇军, 彭芸, 等. 球形弹丸超高速斜撞击薄板的碎片云和侵彻特征仿真分析 [J]. 航天器环境工程, 2021, 38(6): 615–624. DOI: 10.12126/see.2021.06.002.

    LIU X, DENG Y J, PENG Y, et al. Simulation analysis of the characteristics of debris cloud and perforation caused by oblique hypervelocity impact of spherical projectile on a thin plate [J]. Spacecraft Environment Engineering, 2021, 38(6): 615–624. DOI: 10.12126/see.2021.06.002.
    [30] LIU P, LIU Y, ZHANG X. Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2015, 77: 120–133. DOI: 10.1016/j.ijimpeng.2014.11.004.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  29
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2024-04-11
  • 网络出版日期:  2024-04-28
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回