带剪切销抗爆容器定向泄压特性研究

解江 潘汉源 蒋逸伦 杨祥 李漩 郭德龙 冯振宇

解江, 潘汉源, 蒋逸伦, 杨祥, 李漩, 郭德龙, 冯振宇. 带剪切销抗爆容器定向泄压特性研究[J]. 爆炸与冲击, 2024, 44(7): 075101. doi: 10.11883/bzycj-2023-0321
引用本文: 解江, 潘汉源, 蒋逸伦, 杨祥, 李漩, 郭德龙, 冯振宇. 带剪切销抗爆容器定向泄压特性研究[J]. 爆炸与冲击, 2024, 44(7): 075101. doi: 10.11883/bzycj-2023-0321
XIE Jiang, PAN Hanyuan, JIANG Yilun, YANG Xiang, LI Xuan, GUO Delong, FENG Zhenyu. A study of directional explosion venting characteristics of anti-explosion vessel with a shear pin[J]. Explosion And Shock Waves, 2024, 44(7): 075101. doi: 10.11883/bzycj-2023-0321
Citation: XIE Jiang, PAN Hanyuan, JIANG Yilun, YANG Xiang, LI Xuan, GUO Delong, FENG Zhenyu. A study of directional explosion venting characteristics of anti-explosion vessel with a shear pin[J]. Explosion And Shock Waves, 2024, 44(7): 075101. doi: 10.11883/bzycj-2023-0321

带剪切销抗爆容器定向泄压特性研究

doi: 10.11883/bzycj-2023-0321
详细信息
    作者简介:

    解 江(1982- ),男,博士,教授,xiejiang5@126.com

  • 中图分类号: O383

A study of directional explosion venting characteristics of anti-explosion vessel with a shear pin

  • 摘要: 为优化机载抗爆容器的结构设计并拓展其工程应用,研究了带剪切销抗爆容器的定向泄压特性。利用LS-DYNA软件建立了内爆载荷下带剪切销抗爆容器的数值模型,开展了容器内爆试验,获得了剪切销临界直径,并验证了模型可靠性,阐明了抗爆容器内冲击波的传播与载荷分布规律,分析并讨论了泄压过程中泄压盖的运动规律,建立了不同泄压盖质量下药量与剪切销直径之间的函数关系,探究了剪切销的临界断裂问题。结果表明:100 g TNT内爆试验得到剪切销临界直径为22 mm, TNT爆炸后冲击波在容器内往复式传播,约3.8 ms时泄压盖冲出容器,5.0 ms时容器底部残存压力约为0.5 MPa;容器底部超压峰值约为144 MPa,罐体与泄压盖交汇形成的角隅处超压峰值约为149 MPa,且罐体在角隅处产生应变增长效应,角隅处成为新的危险点。剪切销的变形断裂过程会影响泄压盖的运动规律,导致泄压盖速度曲线中出现下降段,剪切销直径越大,下降段持续时间越长。TNT药量与剪切销临界直径呈正比,二者的线性关系不受泄压盖质量的影响。
  • 图  1  AC 25.795-6中最小风险炸弹位置选择区域的尺寸[2]

    Figure  1.  The size of the LRBL in AC 25.795-6[2]

    图  2  泄压过程示意图

    Figure  2.  Schematic diagram of explosion venting process

    图  3  带剪切销抗爆容器的几何模型

    Figure  3.  Geometric model of anti-explosion vessel with shear pin

    图  4  带剪切销抗爆容器有限元模型的三维剖面图

    Figure  4.  Three-dimensional profile of finite element model of anti-explosion vessel with shear pin

    图  5  螺栓与平板的连接细节(左)和单个梁单元螺栓的模型细节(右)

    Figure  5.  Joint details between bolt and panel (left) and model details of single beam element bolt (right)

    图  6  试验装置实物图

    Figure  6.  Photos of experiment device

    图  7  抗爆容器内部的装药方式

    Figure  7.  Charge method in the anti-explosion vessel

    图  8  凹槽处剪切销横截面的最大剪应力云图

    Figure  8.  The maximum shear stress distribution of the shear pin cross section at the groove

    图  9  起爆药量为100 g时直径为22和23 mm的剪切销的断裂情况

    Figure  9.  The fracture of shear pins with diameter of 22 and 23 mm with the TNT mass of 100 g

    图  10  剪切销直径为22 mm、起爆药量为100 g时剪切销与铝合金平板的失效形貌

    Figure  10.  Failure morphology of shear pin and aluminum alloy panel with shear pin diameter of 22 mm and TNT mass of 100 g

    图  11  剪切销直径为23 mm、起爆药量为100 g时铝合金平板的最终形貌

    Figure  11.  Final morphology of aluminum alloy panel with shear pin diameter of 23 mm and TNT mass of 100 g

    图  12  剪切销剪断后凹槽处的横截面失效形貌

    Figure  12.  Failure morphology of cross section at the groove of shear pin

    图  13  起爆药量为100 g时铝合金平板的失效形貌

    Figure  13.  Failure morphology of aluminum alloy panel with the TNT mass of 100 g

    图  14  不同时刻下抗爆容器内部压力云图

    Figure  14.  Internal pressure distribution of anti-explosion vessel at different times

    图  15  罐体结构4个典型位置处的超压-时间曲线

    Figure  15.  Pressure-time curves obtained at four typical locations of vessel structure

    图  16  罐体结构点I处测得的应变时程曲线

    Figure  16.  Strain-time curves measured at the point I of the vessel structure

    图  17  剪切销直径为19 mm时不同起爆药量下的泄压盖速度

    Figure  17.  Venting cover velocity under different TNT mass when the diameter of shear pin is 19 mm

    图  18  0.16 ms时不同起爆药量下剪切销凹槽处横截面的剪切应力云图

    Figure  18.  Shear stress distribution of cross section at the groove of shear pin at 0.16 ms under different TNT mass

    图  19  100 g TNT药量、不同剪切销直径下泄压盖速度时程曲线

    Figure  19.  Time history curves of venting cover velocity under 100 g TNT mass and different shear pin diameters

    图  20  剪切销临界直径、TNT药量变化与剪切销断裂吸能之间的关系

    Figure  20.  The relationship among critical diameter of shear pin, the TNT mass and eroded internal energy

    图  21  不同剪切销临界直径下的泄压盖速度时程曲线

    Figure  21.  Time history curves of venting cover velocity under different critical diameters of shear pin

    图  22  不同泄压盖质量下剪切销临界直径与TNT药量的关系

    Figure  22.  The relationship between critical diameter of shear pin and the TNT mass under different mass of cover

    表  1  15-5PH的材料参数[25,26]

    Table  1.   Material parameters of 15-5PH[25,26]

    ρ/(kg·m−3) E/GPa μ A/GPa B/GPa n C m $ {\dot \varepsilon _0} $/s−1 TF/℃ T0/℃ 塑性失效应变
    7.80×103 199 0.33 0.855 0.448 0.14 0.0137 0.63 0.001 1440 20 0.21
    下载: 导出CSV

    表  2  Ti6Al4V的材料参数[27-29]

    Table  2.   Material parameters of Ti6Al4V[27-29]

    ρ/(kg·m−3) E/GPa μ A/GPa B/GPa n C m $ {\dot \varepsilon _0} $/s−1 TF/℃ T0/℃
    4.43×103 109 0.34 0.86 0.683 0.47 0.035 1 0.001 1620 20
    下载: 导出CSV

    表  3  7050-T7451材料参数[30]

    Table  3.   Material parameters of 7050-T7451[30]

    ρ/(kg·m−3) E/GPa μ σ0/GPa Etan/GPa β
    2.83×103 71.7 0.33 0.469 0.815 1
    下载: 导出CSV

    表  4  2024-T3材料参数[7]

    Table  4.   Material parameters of 2024-T3[7]

    ρ/(kg·m−3) E/GPa μ σ0/GPa Etan/GPa β 塑性失效应变
    2.78×103 72.4 0.33 0.29 0.7 1 0.3
    下载: 导出CSV

    表  5  螺栓材料参数[22]

    Table  5.   Material parameters of bolt[22]

    ρ/(kg·m−3) E/GPa μ σ0/GPa Eh/GPa
    7.85×103 210 0.3 0.64 1.6
    下载: 导出CSV

    表  6  TNT材料模型[33]

    Table  6.   Material parameters of TNT[33]

    A1/GPa B1/GPa R1 R2 ω E0/GPa V ρ/(g·cm−3) D/(m·s−1) pCJ/GPa
    371.20 3.23 4.15 0.95 0.30 7 1 1.63 6930 21
    下载: 导出CSV

    表  7  空气的状态方程参数

    Table  7.   EOS parameters of air

    C0 C1 C2 C3 C4 C5 E1/(J·m−3) V
    0 0 0 0 0.4 0.4 2.533×105 1
    下载: 导出CSV

    表  8  试验工况及试验结果

    Table  8.   Experimental conditions and results

    试验
    编号
    TNT药量/g 剪切销凹槽处
    直径/mm
    剪切销
    是否断裂
    1 100 22.0
    2 100 22.0
    3 100 22.0
    4 100 23.0
    5 42 14.5
    6 44 14.5
    7 44 14.5
    8 44 14.5
    下载: 导出CSV

    表  9  不同剪切销临界直径下泄压盖的运动参数

    Table  9.   Motion parameters of venting cover under different critical diameters of shear pin

    工况 剪切销断裂
    时刻/ms
    泄压盖速度
    峰值/(m·s−1)
    泄压盖速度
    谷值/(m·s−1)
    泄压盖动能
    峰值/J
    TNT内能/kJ 泄压盖动能峰值占TNT
    内能比值/%
    40.0 g-13 mm 0.58 7.31 0.15 100.19 171.77 0.06
    56.1 g-16 mm 0.56 10.32 1.11 199.69 240.91 0.08
    76.2 g-19 mm 0.52 13.01 1.86 317.36 327.22 0.10
    100.0 g-22 mm 0.50 16.18 1.47 490.86 429.43 0.11
    126.0 g-25 mm 0.47 20.33 2.25 774.95 541.08 0.14
    下载: 导出CSV
  • [1] Federal Aviation Administration. Security related considerations in the design and operation of transport category airplanes: Amendment No. 25-127 [R]. Washington: Federal Aviation Administration, 2008.
    [2] Federal Aviation Administration. Least risk bomb location: FAA. AC No: 25.795-6 [R]. Washington: Federal Aviation Administration, 2008.
    [3] 徐维铮, 吴卫国. 泄压口大小对约束空间爆炸准静态超压载荷的影响规律 [J]. 高压物理学报, 2017, 31(5): 619–628. DOI: 10.11858/gywlxb.2017.05.016.

    XU W Z, WU W G. Effects of size of venting holes on the characteristics of quasi-static overpressure in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 619–628. DOI: 10.11858/gywlxb.2017.05.016.
    [4] 刘明君, 李展, 谢伟, 等. 一种新型危险品仓库结构设计及其安全距离 [J]. 爆炸与冲击, 2023, 43(4): 045901. DOI: 10.11883/bzycj-2022-0224.

    LIU M J, LI Z, XIE W, et al. A novel hazard warehouse and its safety separation distance [J]. Explosion and Shock Waves, 2023, 43(4): 045901. DOI: 10.11883/bzycj-2022-0224.
    [5] LANGDON G S, KRIEK S, NURICK G N. Influence of venting on the response of scaled aircraft luggage containers subjected to internal blast loading [J]. International Journal of Impact Engineering, 2020, 141: 103567. DOI: 10.1016/j.ijimpeng.2020.103567.
    [6] 王金贵, 胡超, 罗飞云, 等. 泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究 [J]. 爆炸与冲击, 2022, 42(4): 045102. DOI: 10.11883/bzycj-2021-0327.

    WANG J G, HU C, LUO F Y, et al. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration [J]. Explosion and Shock Waves, 2022, 42(4): 045102. DOI: 10.11883/bzycj-2021-0327.
    [7] 冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应 [J]. 航空学报, 2022, 43(6): 525513. DOI: 10.7527/S1000-6893.2021.25513.

    FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525513. DOI: 10.7527/S1000-6893.2021.25513.
    [8] 朱铮铮, 冯蕴雯, 薛小峰, 等. 一种民机客舱便携式定向防爆装置: CN201610620278.8 [P]. 2016-08-01.
    [9] 韩璐, 苏健军, 张玉磊, 等. 一种聚能泄压民机客舱定向防爆装置: CN201910168298.X [P]. 2019-03-06.
    [10] 张玉磊, 陈华, 韩璐, 等. 泄压口面积对温压炸药内爆炸准静态压力的影响 [J]. 火炸药学报, 2020, 43(5): 521–525. DOI: 10.14077/j.issn.1007-7812.201909024.

    ZHANG Y L, CHEN H, HAN L, et al. Effect of venting area on quasi-static pressure of internal explosion for thermobaric explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(5): 521–525. DOI: 10.14077/j.issn.1007-7812.201909024.
    [11] 汪维, 刘瑞朝, 吴飚, 等. 建筑物内爆泄压口冲击波参数工程算法研究 [J]. 振动与冲击, 2015, 34(9): 48–54. DOI: 10.13465/j.cnki.jvs.2015.09.009.

    WANG W, LIU R C, WU B, et al. Engineering arithmetic for internal blast waves parameters in venting area of building structures [J]. Journal of Vibration and Shock, 2015, 34(9): 48–54. DOI: 10.13465/j.cnki.jvs.2015.09.009.
    [12] YANKELEVSKY D Z, KOCHETKOV A V, FELDGUN V R, et al. A simplified model for explosion venting due to the separation of a heavy protective cover [J]. International Journal of Protective Structures, 2012, 3(1): 81–103. DOI: 10.1260/2041-4196.3.1.81.
    [13] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. A simplified model with lumped parameters for explosion venting simulation [J]. International Journal of Impact Engineering, 2011, 38(12): 964–975. DOI: 10.1016/j.ijimpeng.2011.08.004.
    [14] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [15] MOLKOV V V, GRIGORASH A V, EBER R M, et al. Vented gaseous deflagrations: modelling of hinged inertial vent covers [J]. Journal of Hazardous Materials, 2004, 116(1/2): 1–10. DOI: 10.1016/j.jhazmat.2004.08.027.
    [16] HÖCHST S, LEUCKEL W. On the effect of venting large vessels with mass inert panels [J]. Journal of Loss Prevention in the Process Industries, 1998, 11(2): 89–97. DOI: 10.1016/s0950-4230(97)00031-4.
    [17] 冯振宇, 周书婷, 李恒晖, 等. 运输类飞机“最小风险炸弹位置”的研究进展 [J]. 航空工程进展, 2018, 9(3): 316–325. DOI: 10.16615/j.cnki.1674-8190.2018.03.003.

    FENG Z Y, ZHOU S T, LI H H, et al. Research progress on the “least risk bomb location” (LRBL) for transport aircraft [J]. Advances in Aeronautical Science and Engineering, 2018, 9(3): 316–325. DOI: 10.16615/j.cnki.1674-8190.2018.03.003.
    [18] YEH J, CHEN G, GU C, et al. Computational modeling and forensic analysis for terrorist airplane bombing: a case study [J]. Engineering Fracture Mechanics, 2019, 211: 137–160. DOI: 10.1016/j.engfracmech.2019.01.032.
    [19] 胡志乐, 马亮亮, 吴昊, 等. 远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证 [J]. 爆炸与冲击, 2022, 42(11): 114201. DOI: 10.11883/bzycj-2021-0499.

    HU Z L, MA L L, WU H, et al. Optimization and verification of mesh size for air shock wave from large distance and near ground explosion [J]. Explosion and Shock Waves, 2022, 42(11): 114201. DOI: 10.11883/bzycj-2021-0499.
    [20] 施瑶, 刘振鹏, 潘光, 等. 航行体开槽包裹式缓冲头帽结构设计及其降载性能 [J]. 爆炸与冲击, 2022, 42(12): 123901. DOI: 10.11883/bzycj-2021-0426.

    SHI Y, LIU Z P, PAN G, et al. Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance [J]. Explosion and Shock Waves, 2022, 42(12): 123901. DOI: 10.11883/bzycj-2021-0426.
    [21] 段竹煊. 内爆载荷下机身舱段的动态响应与失效分析 [D]. 天津: 中国民航大学, 2022.

    DUAN Z X. Dynamic response and failure analysis of fuselage section under implosion load [D]. Tianjin: Civil Aviation University of China, 2022.
    [22] 齐宗美. 面向显式动力分析的螺栓简化建模方法研究 [D]. 大连: 大连理工大学, 2021.

    QI Z M. Research on simplified modeling method of bolt for explicit dynamic analysis [D]. Dalian: Dalian University of Technology, 2021.
    [23] 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟 [J]. 航空学报, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.

    XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.
    [24] NIA A B, NEJAD A F, LI X, et al. Dynamic response of aluminium sheet 2024-T3 subjected to close-range shock wave: experimental and numerical studies [J]. Journal of Materials Research and Technology, 2021, 10: 349–362. DOI: 10.1016/j.jmrt.2020.12.029.
    [25] MONDELIN A, VALIORGUE F, RECH J, et al. Hybrid model for the prediction of residual stresses induced by 15-5PH steel turning [J]. International Journal of Mechanical Sciences, 2012, 58(1): 69–85. DOI: 10.1016/j.ijmecsci.2012.03.003.
    [26] WU T, CORET M, COMBESCURE A. Numerical simulation of welding induced damage and residual stress of martensitic steel 15-5PH [J]. International Journal of Solids and Structures, 2008, 45(18/19): 4973–4989. DOI: 10.1016/j.ijsolstr.2008.04.027.
    [27] XU X, OUTEIRO J, ZHANG J, et al. Machining simulation of Ti6Al4V using coupled Eulerian-Lagrangian approach and a constitutive model considering the state of stress [J]. Simulation Modelling Practice and Theory, 2021, 110: 102312. DOI: 10.1016/j.simpat.2021.102312.
    [28] CHENG W Y, OUTEIRO J, COSTES J P, et al. A constitutive model for Ti6Al4V considering the state of stress and strain rate effects [J]. Mechanics of Materials, 2019, 137: 103103. DOI: 10.1016/j.mechmat.2019.103103.
    [29] CHEN G, REN C Z, YANG X Y, et al. Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model [J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9): 1027–1038. DOI: 10.1007/s00170-011-3233-6.
    [30] 于鑫, 孙杰, 熊青春, 等. 7050-T7451铝合金铣削加工表面材料特性与本构关系模型的建立 [J]. 中国有色金属学报, 2015, 25(11): 2982–2989. DOI: 10.19476/j.ysxb.1004.0609.2015.11.004.

    YU X, SUN J, XIONG Q C, et al. Milling surface properties of 7050-T7451 aluminum alloy and establishment of constitutive model [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2982–2989. DOI: 10.19476/j.ysxb.1004.0609.2015.11.004.
    [31] 李臻, 刘彦, 黄风雷, 等. 接触爆炸和近距离爆炸比冲量数值仿真研究 [J]. 北京理工大学学报, 2020, 40(2): 143–149. DOI: 10.15918/j.tbit1001-0645.2019.049.

    LI Z, LIU Y, HUANG F L, et al. Investigation of specific impulse under contact explosion and close-in explosion conditions using numerical method [J]. Transactions of Beijing Institute of Technology, 2020, 40(2): 143–149. DOI: 10.15918/j.tbit1001-0645.2019.049.
    [32] 王辉. 炸药爆炸产物JWL状态方程参数数值计算 [D]. 西安: 西安工业大学, 2011.

    WANG H. Numerical calculation of the JWL EOS parameters of explosive detonation products [D]. Xi’an: Xi`an Technological University, 2011.
    [33] CARNEY K S, DUBOIS P, CUDZIŁO S, et al. The effect of TNT mass and standoff distance on the response of fully clamped circular aluminum plates to confined air-blast loading [J]. International Journal of Impact Engineering, 2022, 170: 104357. DOI: 10.1016/j.ijimpeng.2022.104357.
    [34] 戴志成. 飞机断离销剪切强度有限元与实验研究 [D]. 沈阳: 沈阳理工大学, 2017.

    DAI Z C. Finite element and experimental study on shear strength of aircraft fuse Pin [D]. Shenyang: Shenyang Ligong University, 2017.
    [35] 冯蕴雯, 林心怡, 薛小锋, 等. 高可靠单向爆破的民机防爆结构设计 [J]. 航空学报, 2023, 44(18): 228297. DOI: 10.7527/S1000-6893.2023.28297.

    FENG Y W, LIN X Y, XUE X F, et al. Design of civil aircraft explosion-proof structure for high reliable one-way blasting [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228297. DOI: 10.7527/S1000-6893.2023.28297.
    [36] 解江, 潘汉源, 李漩, 等. 内爆载荷作用下泄压容器准静态压力特性 [J]. 应用数学和力学, 2023, 44(10): 1236–1249. DOI: 10.21656/1000-0887.430359.

    XIE J, PAN H Y, LI X, et al. Quasi-static pressure characteristics of explosion venting vessel under confined explosion [J]. Applied Mathematics and Mechanics, 2023, 44(10): 1236–1249. DOI: 10.21656/1000-0887.430359.
    [37] 左铭朔, 徐豫新, 李永鹏, 等. 民机用定向泄爆容器结构爆炸载荷下的动态响应 [J/OL]. 兵工学报. (2023-06-09)[2023-10-30]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20230608.1210.006.html.

    ZUO M S, XU Y X, LI Y P, et al. Dynamic response of directional blast relief container structure for civil aircraft under explosive loading [J/OL]. Acta Armamentarii. (2023-06-09)[2023-10-30]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20230608.1210.006.html.
    [38] 马银亮, 张攀, 程远胜, 等. 舱内爆炸载荷下箱型舱室角隅连接结构设计 [J]. 爆炸与冲击, 2022, 42(12): 125102. DOI: 10.11883/bzycj-2021-0437.

    MA Y L, ZHANG P, CHENG Y S, et al. Design of corner connection structures of box-type cabins subjected to internal blast loading [J]. Explosion and Shock Waves, 2022, 42(12): 125102. DOI: 10.11883/bzycj-2021-0437.
    [39] 徐景林, 顾文彬, 刘建青, 等. 圆柱形爆炸容器内爆炸载荷的分布规律 [J]. 振动与冲击, 2020, 39(18): 276–282. DOI: 10.13465/j.cnki.jvs.2020.18.038.

    XU J L, GU W B, LIU J Q, et al. Distribution of blast loading in cylindrical explosive containment vessels [J]. Journal of Vibration and Shock, 2020, 39(18): 276–282. DOI: 10.13465/j.cnki.jvs.2020.18.038.
    [40] 徐景林, 顾文彬, 刘建青, 等. 圆柱形爆炸容器的应变增长现象 [J]. 兵工学报, 2018, 39(S1): 96–101. DOI: 10.3969/j.issn.1000-1093.2018.S1.016.

    XU J L, GU W B, LIU J Q, et al. Strain growth in cylindrical explosion vessel subjected to internal blast loading [J]. Acta Armamentarii, 2018, 39(S1): 96–101. DOI: 10.3969/j.issn.1000-1093.2018.S1.016.
    [41] DONG Q, LI Q M, ZHENG J Y. Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels [J]. International Journal of Impact Engineering, 2010, 37(4): 349–358. DOI: 10.1016/j.ijimpeng.2009.10.004.
    [42] LIU X, GU W B, LIU J Q, et al. Dynamic response of cylindrical explosion containment vessels subjected to internal blast loading [J]. International Journal of Impact Engineering, 2020, 135: 103389. DOI: 10.1016/j.ijimpeng.2019.103389.
  • 加载中
图(22) / 表(9)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  25
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2024-03-29
  • 网络出版日期:  2024-03-29
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回