含液金属蜂窝夹芯梁抗冲击性能研究

高辉遥 赵振宇 张磊 张杜江 张智扬 卢天健

高辉遥, 赵振宇, 张磊, 张杜江, 张智扬, 卢天健. 含液金属蜂窝夹芯梁抗冲击性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0323
引用本文: 高辉遥, 赵振宇, 张磊, 张杜江, 张智扬, 卢天健. 含液金属蜂窝夹芯梁抗冲击性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0323
GAO Huiyao, ZHAO Zhenyu, ZHANG Lei, ZHANG Dujiang, ZHANG Zhiyang, LU Tianjian. Research on impact resistance of water-filled metal honeycomb sandwich beams[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0323
Citation: GAO Huiyao, ZHAO Zhenyu, ZHANG Lei, ZHANG Dujiang, ZHANG Zhiyang, LU Tianjian. Research on impact resistance of water-filled metal honeycomb sandwich beams[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0323

含液金属蜂窝夹芯梁抗冲击性能研究

doi: 10.11883/bzycj-2023-0323
基金项目: 国家自然科学基金(11972185,12002156);航空航天结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(MCMS-I-0222K01)
详细信息
    作者简介:

    高辉遥(2000- ),女,博士研究生,011950204ghy@nuaa.edu.cn

    通讯作者:

    赵振宇(1986- ),男,博士,副研究员,zhenyu_zhao@nuaa.edu.cn

  • 中图分类号: O347.1; O383

Research on impact resistance of water-filled metal honeycomb sandwich beams

  • 摘要: 提出了含液金属蜂窝夹芯结构的防护方案;设计了含液金属蜂窝夹芯结构的制备方法,以满足结构内液体的密封、液体含量以及填充位置可调控的需求;并通过冲击实验获得了结构在不同冲击速度下的动态响应,同时采用有限元方法进一步讨论了冲击速度、液体含量对结构抗冲击以及冲后振动特性的影响。研究结果表明含液结构的抗冲击表现优于无填充结构,且含液结构抗冲击、冲后振动特性受含液量的影响,当芯体内充满液体时结构可获得最优的抗冲击性能。
  • 图  1  正方蜂窝夹层结构尺寸

    Figure  1.  Square metal honeycomb sandwich structure dimensions

    图  2  含液金属蜂窝夹层结构制备流程

    Figure  2.  Fabrication process of water-filled metal honeycomb sandwich beams

    图  3  液胞填充方式

    Figure  3.  Liquid cell filling method

    图  4  冲击试验样件示意图

    Figure  4.  Schematic diagram of impact test specimens

    图  5  无填充结构冲击有限元模型

    Figure  5.  Impact finite element model for unfilled structures

    图  6  液结构冲击数值模型

    Figure  6.  Impact simulation model of water-filled structure

    图  7  芯体网格敏感性分析

    Figure  7.  Sensitivity analysis of core mesh

    图  8  面板网格敏感性分析

    Figure  8.  Sensitivity analysis of panel mesh

    图  9  含液结构液体网格敏感性分析

    Figure  9.  Sensitivity analysis of liquid mesh in liquid containing structures

    图  10  固支梁受质量撞击时塑性动力响应

    Figure  10.  Plastic dynamic response of a solid-supported beam subjected to mass impact

    图  11  结构在约120 m/s冲击速度下的动态响应过程

    Figure  11.  Dynamic response of unfilled structure at an impact velocity of about 120 m/s

    图  13  试验后的泡沫子弹最终形貌

    Figure  13.  Final profiles of foam projectiles

    图  12  含液结构在约120 m/s冲击速度下的动态响应过程

    Figure  12.  Dynamic response of water-filled structure at an impact velocity of about 120 m/s

    图  14  实验样件变形失效情况

    Figure  14.  Deformation and failure of experimental specimens

    图  15  无填充、含液样件系统的各关键能量随时间的演化规律

    Figure  15.  Evolution law of each key energy with time for unfilled, water-filled sample systems

    图  16  实验与模拟预测的前后面板位移对比

    Figure  16.  Comparison of before and after panel displacements predicted by experiment and simulation

    图  17  无填充结构在约120 m/s冲击速度下的动态响应过程实验与模拟对比

    Figure  17.  Experimental and simulation comparison of dynamic response process of unfilled structure at about 120 m/s impact velocity

    图  18  不同冲击速度下无填充、含液结构位移响应

    Figure  18.  Displacement response of unfilled and water-filled structure under different impact velocities

    图  19  不同含液量下含液结构位移响应

    Figure  19.  Displacement response of water-filled structures with different liquid contents

    图  20  不同无量纲含液量下结构振动衰减时程曲线

    Figure  20.  Damping effect of structure with different dimensionless liquid content

    表  1  正方蜂窝夹层梁参数

    Table  1.   Square metal honeycomb laminated beam parameters

    L/mm W/mm H/mm tf/mm Hc/mm tc/mm lc/mm Lb/mm db/mm ρs/(kg·m−3) ρc/(kg·m−3) h/mm
    150 60 19 2 15 0.4 29 35 10 7800 268 0~15
     注:LWHtfHctclcLbdbρsρch分别为梁半长度、梁宽度、梁总厚度、面板厚度、芯体高度、单胞壁厚、单胞长度、垫块长度、螺栓孔直径、面板密度、含液芯体相对密度、液体高度
    下载: 导出CSV

    表  2  气凝胶隔热膜材料参数

    Table  2.   Aerogel insulation film material parameters

    化学成分 体积密度/(kg·m−3) 纤维熔点/(℃) 推荐使用温度/℃ 导热系数/(W·m−1·K−1) 厚度/mm
    氧化硅 200±20 1400 −50~1200 0.026 1
    下载: 导出CSV

    表  3  样件质量

    Table  3.   Mass of the specimens

    No.理想质量/g制备后样件质量/g实验前样件质量/g
    N-1753753753
    N-2752752752
    W-1921908904
    W-2921902900
    下载: 导出CSV

    表  4  轻气炮冲击实验结果

    Table  4.   Impact experimental result

    NO.mb/gma/gmpb/gmpa/g$ {v}_{0} $/(m·s−1)I/(kPa·s)W/mm
    N-1753753110.6109.599.74.1717.8
    N-2752752107.2107.0121.74.9119.24
    W-1904853109.6109.1100.94.1916.7
    W-2900836109.6108.9118.44.9118.8
    下载: 导出CSV

    表  5  不同含液量下含液结构质量、位移数据

    Table  5.   Mass and displacement data of water-filled structures at different fluid contents

    含液比率 结构增重/% 峰值位移减小量/%
    0 0 0
    0.29 9.36 6.64
    0.57 18.60 11.15
    0.80 26.11 13.32
    1.00 32.63 13.66
    下载: 导出CSV

    表  6  不同无量纲含液量下结构阻尼比

    Table  6.   Structural damping ratio under different dimensionless liquid contents

    含液比率 结构质量增重/% 阻尼比 阻尼增量/%
    0 0 0.027 0
    0.29 9.36 0.037 39.6
    0.57 18.60 0.053 97.3
    0.80 26.11 0.054 103.0
    1.00 32.63 0.071 164.4
    下载: 导出CSV
  • [1] ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225–246. DOI: 10.1016/j.marstruc.2014.11.007.
    [2] 魏子涵, 赵振宇, 叶帆, 等. 金属蜂窝夹层结构抗水下爆炸特性 [J]. 爆炸与冲击, 2021, 41(8): 083104. DOI: 10.11883/bzycj-2020-0392.

    WEI Z H, ZHAO Z Y, YE F, et al. Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock [J]. Explosion and Shock Waves, 2021, 41(8): 083104. DOI: 10.11883/bzycj-2020-0392.
    [3] WADLEY H N G, BØRVIK T, OLOVSSON L, et al. Deformation and fracture of impulsively loaded sandwich panels [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 674–699. DOI: 10.1016/j.jmps.2012.07.007.
    [4] 赵振宇, 周贻来, 任建伟, 等. 浅埋炸药爆炸形貌及其冲击作用效应 [J]. 爆炸与冲击, 2022, 42(4): 042303. DOI: 10.11883/bzycj-2021-0376.

    ZHAO Z Y, ZHOU Y L, REN J W, et al. Explosion morphology and impacting effects of shallow-buried explosives [J]. Explosion and Shock Waves, 2022, 42(4): 042303. DOI: 10.11883/bzycj-2021-0376.
    [5] 赵振宇, 任建伟, 金峰, 等. 浅埋炸药爆炸动力学研究进展 [J]. 应用力学学报, 2022, 39(1): 1–11. DOI: 10.11776/j.issn.1000-4939.2022.01.001.

    ZHAO Z Y, REN J W, JIN F, et al. Progress in research on explosion dynamics of shallow-buried explosives [J]. Chinese Journal of Applied Mechanics, 2022, 39(1): 1–11. DOI: 10.11776/j.issn.1000-4939.2022.01.001.
    [6] ZHANG D J, ZHAO Z Y, DU S F, et al. Dynamic response of ultralight all-metallic sandwich panel with 3D tube cellular core to shallow-buried explosives [J]. Science China Technological Sciences, 2021, 64(7): 1371–1388. DOI: 10.1007/s11431-020-1774-1.
    [7] LI X, KANG R, LI C, et al. Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading [J]. Composite Structures, 2023, 311: 116791. DOI: 10.1016/j.compstruct.2023.116791.
    [8] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
    [9] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
    [10] CHEN X, SURANI F B, KONG X G, et al. Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid [J]. Applied Physics Letters, 2006, 89(24): 241918. DOI: 10.1063/1.2405852.
    [11] LAKES R S. High damping composite materials: effect of structural hierarchy [J]. Journal of Composite Materials, 2002, 36(3): 287–297. DOI: 10.1177/0021998302036003538.
    [12] AKTAY L, TOKSOY A K, GÜDEN M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: experimental and numerical analysis [J]. Materials & Design, 2006, 27(7): 556–565. DOI: 10.1016/j.matdes.2004.12.019.
    [13] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. DOI: 10.1016/S0263-8231(01)00006-4.
    [14] MOZAFARI H, MOLATEFI H, CRUPI V, et al. In plane compressive response and crushing of foam filled aluminum honeycombs [J]. Journal of Composite Materials, 2015, 49(26): 3215–3228. DOI: 10.1177/0021998314561069.
    [15] VAZIRI A, XUE Z Y, HUTCHINSON J W. Metal sandwich plates with polymer foam-filled cores [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 97–127. DOI: 10.2140/jomms.2006.1.97.
    [16] 包正. 高速冲击载荷下颅脑流固耦合跨尺度模拟与损伤研究 [D]. 湘潭: 湖南科技大学, 2018. DOI: 10.27738/d.cnki.ghnkd.2018.000003.

    BAO Z. The simulation and injure study of cross-scale and fluid-solid coupling head model under high-speed impact loading [D]. Xiangtan: Hunan University of Science and Technology, 2018. DOI: 10.27738/d.cnki.ghnkd.2018.000003.
    [17] RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/J.IJIMPENG.2004.07.012.
    [18] 张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证 [J]. 兵工学报, 2022, 43(8): 1966–1976. DOI: 10.12382/bgxb.2021.0409.

    ZHANG D J, ZHAO Z Y, HE L, et al. Calibration and verification of dynamic mechanical properties of high-strength armored steel based on Johnson-Cook constitutive model [J]. Acta Armamentarii, 2022, 43(8): 1966–1976. DOI: 10.12382/bgxb.2021.0409.
    [19] DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1005–1038. DOI: 10.1016/j.ijimpeng.2004.06.004.
    [20] ITOH S, HAMASHIMA H, MURATA K, et al. Determination of JWL parameters from underwater explosion test [J]. Science & Technology of Energetic Materials, 2002, 64: 248–253.
    [21] RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading [J]. International Journal of Solids and Structures, 2006, 43(6): 1746–1763. DOI: 10.1016/j.ijsolstr.2005.06.079.
    [22] ZHAO Z Y, ZHANG D J, CHEN W J, et al. An analytical model of blast resistance for all-metallic sandwich panels subjected to shallow-buried explosives [J]. International Journal of Mechanics and Materials in Design, 2022, 18(4): 873–892. DOI: 10.1007/s10999-022-09605-w.
    [23] WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  7
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2024-01-23
  • 网络出版日期:  2024-04-15

目录

    /

    返回文章
    返回