富氢甲烷的爆燃特性与爆炸抑制研究进展

蔡冲冲 苏洋 王燕

蔡冲冲, 苏洋, 王燕. 富氢甲烷的爆燃特性与爆炸抑制研究进展[J]. 爆炸与冲击, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330
引用本文: 蔡冲冲, 苏洋, 王燕. 富氢甲烷的爆燃特性与爆炸抑制研究进展[J]. 爆炸与冲击, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330
CAI Chongchong, SU Yang, WANG Yan. Research progress on the deflagration characteristics and explosion suppression of hydrogen-rich methane[J]. Explosion And Shock Waves, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330
Citation: CAI Chongchong, SU Yang, WANG Yan. Research progress on the deflagration characteristics and explosion suppression of hydrogen-rich methane[J]. Explosion And Shock Waves, 2024, 44(7): 071101. doi: 10.11883/bzycj-2023-0330

富氢甲烷的爆燃特性与爆炸抑制研究进展

doi: 10.11883/bzycj-2023-0330
基金项目: 国家重点研发计划“重大自然灾害防控与公共安全”重点专项(2022YFC3080700);河南省优秀青年科学基金(212300410042)
详细信息
    作者简介:

    蔡冲冲(1997- ),男,硕士,ccc@home.hpu.edu.cn

    通讯作者:

    苏 洋(1992- ),男,博士,讲师,su_yang@hpu.edu.cn

  • 中图分类号: O389

Research progress on the deflagration characteristics and explosion suppression of hydrogen-rich methane

  • 摘要: 氢能是未来国家能源体系的重要组成部分,将氢气与天然气混合形成富氢燃料,可为能源结构向可再生和绿色能源转型提供支持,但也带来了更严峻的安全挑战。为系统了解富氢甲烷燃料的应用现状及富氢甲烷燃料的安全利用,通过文献调研,从爆燃火焰特性、爆炸特征参数、爆燃机理以及抑爆材料等方面对富氢甲烷爆燃特性与抑爆研究进行综述和讨论,并分析总结近年来的研究方向。发现随着氢气添加比的增加,火焰固有不稳定性、火焰传播速度和爆炸强度等参数存在不同程度的增强,抑爆材料的抑制效果不断减弱;目前针对多元因素耦合的富氢甲烷爆炸特性研究不足,抑爆剂协同抑爆机理尚未揭示清晰。基于此,对富氢甲烷燃料亟待解决的方向和今后研究重点进行展望,为富氢天然气产业规模化发展的安全问题提供理论依据。
  • 图  1  定压法和定容法示意图[7]

    Figure  1.  Schematic diagram of constant pressure method and constant volume method[7]

    图  2  不同压力、当量比和氢气添加比的有效路易斯数[12]

    Figure  2.  Effective Lewis number under different pressures, equivalence ratios, and hydrogen addition ratios[12]

    图  3  氢气和甲烷在不同压力下的临界佩克莱数和马克斯坦长度的变化[12]

    Figure  3.  Changes in critical Péclet number and Maxtan length of hydrogen and methane under different pressures[12]

    图  4  不同压力下富氢甲烷细胞火焰的形态[23]

    Figure  4.  Morphologies of hydrogen-rich methane cell flames under different pressures[23]

    图  5  第4阶段后的扭曲郁金香火焰阶段[33]

    Figure  5.  Twisted tulip flame stages after the fourth stage[33]

    图  6  不同长宽比与不同氢气添加比下郁金香火焰形成后火焰形态的变化[29]

    Figure  6.  Flame shape changes after tulip flame formation with different aspect ratios and hydrogen addition ratios[29]

    图  7  不同氢气添加比下最小点火能与熄灭距离的关系[41]

    Figure  7.  Relationships between minimum ignition energy and extinction distance under different hydrogen addition ratios[41]

    图  8  不同当量比和氢气添加比的富氢甲烷爆炸极限[44]

    Figure  8.  Flammability limit of hydrogen rich methane with different equivalence ratios and hydrogen addition ratios[44]

    图  9  不同氢气添加比富氢甲烷的爆炸压力与热损失[53]

    Figure  9.  Explosion pressure and heat loss of hydrogen rich methane with different hydrogen addition ratios[53]

    图  10  不同氢气添加比富氢甲烷爆炸超压的绝热模拟与实验结果的对比[54]

    Figure  10.  Adiabatic simulations of hydrogen-rich methane explosion overpressure at different hydrogen addition ratios compared with experimental results[54]

    图  11  不同当量比氢气添加对关键自由基的影响[34]

    Figure  11.  Effects of hydrogen additions with different equivalence ratios on key free radicals[34]

  • [1] 单彤文, 宋鹏飞, 侯建国, 等. LNG产业视角下不同天然气制氢模式的终端氢气成本分析 [J]. 天然气化工(C1化学与化工), 2020, 45(2): 129–134. DOI: 10.3969/j.issn.1001-9219.2020.02.023.

    SHAN T W, SONG P F, HOU J G, et al. Cost analysis of hydrogen produced from different modes of natural gas to hydrogen-from the perspective of LNG industry [J]. Natural Gas Chemical Industry , 2020, 45(2): 129–134. DOI: 10.3969/j.issn.1001-9219.2020.02.023.
    [2] 宋鹏飞, 侯建国, 王秀林. 甲基环己烷-甲苯液体有机物储氢技术的研究进展 [J]. 天然气化工(C1化学与化工), 2021, 46(S1): 18–23. DOI: 10.3969/j.issn.1001-9219.2021.z1.003.

    SONG P F, HOU J G, WANG X L. Research progress on methylcyclohexane-toluene liquid organic hydrogen storage technology [J]. Natural Gas Chemical Industry , 2021, 46(S1): 18–23. DOI: 10.3969/j.issn.1001-9219.2021.z1.003.
    [3] 侯建国, 单彤文, 张超, 等. 小型橇装天然气制氢技术现状与发展趋势分析 [J]. 天然气化工(C1化学与化工), 2021, 46(3): 1–6. DOI: 10.3969/j.issn.1001-9219.2021.03.001.

    HOU J G, SHAN T W, ZHANG C, et al. Current situation and development trend analysis of small skid mounted natural gas hydrogen production technology [J]. Natural Gas Chemical Industry , 2021, 46(3): 1–6. DOI: 10.3969/j.issn.1001-9219.2021.03.001.
    [4] 宋鹏飞, 单彤文, 李又武, 等. 天然气管道掺入氢气的影响及技术可行性分析 [J]. 现代化工, 2020, 40(7): 5–10. DOI: 10.16606/j.cnki.issn0253-4320.2020.07.002.

    SONG P F, SHAN T W, LI Y W, et al. Impact of hydrogen into natural gas grid and technical feasibility analysis [J]. Modern Chemical Industry, 2020, 40(7): 5–10. DOI: 10.16606/j.cnki.issn0253-4320.2020.07.002.
    [5] 李凤, 董绍华, 陈林, 等. 掺氢天然气长距离管道输送安全关键技术与进展 [J]. 力学与实践, 2023, 45(2): 230–244. DOI: 10.6052/1000-0879-22-579.

    LI F, DONG S H, CHEN L, et al. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas [J]. Mechanics in Engineering, 2023, 45(2): 230–244. DOI: 10.6052/1000-0879-22-579.
    [6] 范维澄, 苗鸿雁, 袁亮, 等. 我国安全科学与工程学科“十四五”发展战略研究 [J]. 中国科学基金, 2021, 35(6): 864–870. DOI: 10.16262/j.cnki.1000-8217.2021.06.003.

    FAN W C, MIAO H Y, YUAN L, et al. Development strategy of safety discipline in China during the 14th five-year plan period [J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6): 864–870. DOI: 10.16262/j.cnki.1000-8217.2021.06.003.
    [7] FAGHIH M, CHEN Z. The constant-volume propagating spherical flame method for laminar flame speed measurement [J]. Science Bulletin, 2016, 61(16): 1296–1310. DOI: 10.1007/s11434-016-1143-6.
    [8] XIOURIS C, YE T L, JAYACHANDRAN J, et al. Laminar flame speeds under engine-relevant conditions: uncertainty quantification and minimization in spherically expanding flame experiments [J]. Combustion and Flame, 2016, 163: 270–283. DOI: 10.1016/j.combustflame.2015.10.003.
    [9] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
    [10] XU C S, WANG H Y, OPPONG F, et al. Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method [J]. Energy, 2020, 190: 116315. DOI: 10.1016/j.energy.2019.116315.
    [11] 丁以斌, 高伟. 当量比和初压对二甲醚-空气爆炸特性的影响研究 [J]. 安全与环境学报, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.

    DING Y B, GAO W. Effect of the equivalence ratio and the initial pressure on the particular features of the dimethyl ether-air explosion [J]. Journal of Safety and Environment, 2021, 21(5): 2076–2080. DOI: 10.13637/j.issn.1009-6094.2020.0347.
    [12] MORSY M E, YANG J F. The instability of laminar methane/hydrogen/air flames: correlation between small and large-scale explosions [J]. International Journal of Hydrogen Energy, 2022, 47(69): 29959–29970. DOI: 10.1016/j.ijhydene.2022.06.289.
    [13] OKAFOR E C, HAYAKAWA A, NAGANO Y, et al. Effects of Hydrogen concentration on hydrogen-methane-air lean laminar flames [C]//Proceedings of the KSME-JSME 8th Thermal and Fluid Engineering Conference. 2012.
    [14] BECHTOLD J K, MATALON M. The dependence of the Markstein length on stoichiometry [J]. Combustion and Flame, 2001, 127(1/2): 1906–1913. DOI: 10.1016/S0010-2180(01)00297-8.
    [15] HU E J, HUANG Z H, HE J J, et al. Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(13): 5574–5584. DOI: 10.1016/j.ijhydene.2009.04.058.
    [16] BEECKMANN J, HESSE R, KRUSE S, et al. Propagation speed and stability of spherically expanding hydrogen/air flames: experimental study and asymptotics [J]. Proceedings of the Combustion Institute, 2017, 36(1): 1531–1538. DOI: 10.1016/j.proci.2016.06.194.
    [17] KIM W, IMAMURA T, MOGI T, et al. Experimental investigation on the onset of cellular instabilities and acceleration of expanding spherical flames [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14821–14828. DOI: 10.1016/j.ijhydene.2017.04.068.
    [18] 李停. H2/CH4/N2O预混气体燃烧特性和火焰不稳定性研究 [D]. 合肥: 中国科学技术大学, 2022.

    LI T. Combustion characteristics and flame instability of H2/CH4/N2O premixed gas [D]. Hefei: University of Science and Technology of China, 2022.
    [19] JOMAAS G, LAW C K, BECHTOLD J K. On transition to cellularity in expanding spherical flames [J]. Journal of Fluid Mechanics, 2007, 583: 1–26. DOI: 10.1017/S0022112007005885.
    [20] LAW C K, JOMAAS G, BECHTOLD J K. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment [J]. Proceedings of the Combustion Institute, 2005, 30(1): 159–167. DOI: 10.1016/j.proci.2004.08.266.
    [21] GOSTINTSEV Y A, ISTRATOV A G, SHULENIN Y V. Self-similar propagation of a free turbulent flame in mixed gas mixtures [J]. Combustion, Explosion and Shock Waves, 1988, 24(5): 563–569. DOI: 10.1007/BF00755496.
    [22] OKAFOR E C, NAGANO Y, KITAGAWA T. Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressures [J]. International Journal of Hydrogen Energy, 2016, 41(15): 6581–6592. DOI: 10.1016/j.ijhydene.2016.02.151.
    [23] WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
    [24] YENERDAG B, FUKUSHIMA N, SHIMURA M, et al. Turbulence–flame interaction and fractal characteristics of H2-air premixed flame under pressure rising condition [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1277–1285. DOI: 10.1016/j.proci.2014.05.153.
    [25] GOULDIN F C. An application of fractals to modeling premixed turbulent flames [J]. Combustion and Flame, 1987, 68(3): 249–266. DOI: 10.1016/0010-2180(87)90003-4.
    [26] MA F H, LI S, ZHAO J B, et al. A fractal-based quasi-dimensional combustion model for SI engines fuelled by hydrogen enriched compressed natural gas [J]. International Journal of Hydrogen Energy, 2012, 37(12): 9892–9901. DOI: 10.1016/j.ijhydene.2012.03.045.
    [27] XIAO H H, MAKAROV D, SUN J H, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame, 2012, 159(4): 1523–1538. DOI: 10.1016/j.combustflame.2011.12.003.
    [28] 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究 [D]. 合肥: 中国科学技术大学, 2013.

    XIAO H H. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts [D]. Hefei: University of Science and Technology of China, 2013.
    [29] ZHENG K, YU M G, ZHENG L G, et al. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts [J]. International Journal of Hydrogen Energy, 2017, 42(8): 5426–5438. DOI: 10.1016/j.ijhydene.2016.10.106.
    [30] LIANG B, HUANG L, GAO W, et al. Flame evolution and pressure dynamics of methane-hydrogen-air explosion in a horizontal rectangular duct [J]. Fuel, 2024, 357: 129962. DOI: 10.1016/j.fuel.2023.129962.
    [31] YANG J, GUO J, WANG C H, et al. Effect of equivalence ratio on hydrogen-methane-air deflagration in a duct with an open end [J]. Fuel, 2020, 280: 118694. DOI: 10.1016/j.fuel.2020.118694.
    [32] 倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.

    NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.
    [33] 马青峰, 韩辉, 李玉星, 等. 受限空间掺氢天然气泄漏与燃爆特性研究综述 [J]. 油气与新能源, 2023, 35(1): 117–128. DOI: 10.3969/j.issn.2097-0021.2023.01.015.

    MA Q F, HAN H, LI Y X, et al. Research summary of the leakage, combustion and explosion characteristics concerning hydrogen enriched compressed natural gas (HCNG) in confined space [J]. Petroleum and New Energy, 2023, 35(1): 117–128. DOI: 10.3969/j.issn.2097-0021.2023.01.015.
    [34] LIU G L, WANG J, ZHENG L G, et al. Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions [J]. Energy, 2023, 276: 127607. DOI: 10.1016/j.energy.2023.127607.
    [35] WANG S, XIAO G Q, FENG Y, et al. Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio [J]. Energy, 2023, 267: 126620. DOI: 10.1016/j.energy.2023.126620.
    [36] CAI P, LIU Z Y, LI P L, et al. Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel [J]. Energy, 2023, 265: 126302. DOI: 10.1016/j.energy.2022.126302.
    [37] WANG S, XIAO G Q, MI H F, et al. Experimental and numerical study on flame fusion behavior of premixed hydrogen/methane explosion with two-channel obstacles [J]. Fuel, 2023, 333: 126530. DOI: 10.1016/j.fuel.2022.126530.
    [38] 刘晓洋, 喻健良, 侯玉洁, 等. 螺旋微通道对掺氢甲烷爆轰传播的影响 [J]. 化工学报, 2023, 74(7): 3139–3148. DOI: 10.11949/0438-1157.20230365.

    LIU X Y, YU J L, HOU Y J, et al. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139–3148. DOI: 10.11949/0438-1157.20230365.
    [39] 陈洪强, 李俊磊, 张成龙, 等. 掺氢可燃气体燃爆特性研究进展 [J]. 力学与实践, 2023, 45(2): 345–361. DOI: 10.6052/1000-0879-22-688.

    CHEN H Q, LI J L, ZHANG C L, et al. Research progress in the study of flammability and explosion characteristics of hydrogen-doped combustible gases [J]. Mechanics in Engineering, 2023, 45(2): 345–361. DOI: 10.6052/1000-0879-22-688.
    [40] 王朝君, 黄诗晗, 胡二江, 等. 甲烷/氢气/空气混合气激光诱导等离子体点火特性 [J]. 中南大学学报(自然科学版), 2022, 53(6): 2111–2121. DOI: 10.11817/j.issn.1672-7207.2022.06.013.

    WANG C J, HUANG S H, HU E J, et al. Laser-induced plasma ignition characteristics of methane/hydrogen/air mixture [J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2111–2121. DOI: 10.11817/j.issn.1672-7207.2022.06.013.
    [41] TANG C L, ZHANG Y J, HUANG Z H. Progress in combustion investigations of hydrogen enriched hydrocarbons [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 195–216. DOI: 10.1016/j.rser.2013.10.005.
    [42] MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291–11298. DOI: 10.1016/j.ijhydene.2014.05.030.
    [43] WANG W Q, SUN Z Y. Experimental studies on explosive limits and minimum ignition energy of syngas: a comparative review [J]. International Journal of Hydrogen Energy, 2019, 44(11): 5640–5649. DOI: 10.1016/j.ijhydene.2018.08.016.
    [44] MESSAOUDANI Z L, RIGAS F, BINTI HAMID M D, et al. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: a critical review [J]. International Journal of Hydrogen Energy, 2016, 41(39): 17511–17525. DOI: 10.1016/j.ijhydene.2016.07.171.
    [45] MIAO H Y, LU L, HUANG Z H. Flammability limits of hydrogen-enriched natural gas [J]. International Journal of Hydrogen Energy, 2011, 36(11): 6937–6947. DOI: 10.1016/j.ijhydene.2011.02.126.
    [46] MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. DOI: 10.1016/j.psep.2019.07.012.
    [47] VAN DEN SCHOOR F, VERPLAETSEN F, BERGHMANS J. Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2008, 153(3): 1301–1307. DOI: 10.1016/j.jhazmat.2007.09.088.
    [48] HAO Q Q, LUO Z M, WANG T, et al. The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures [J]. Experimental Thermal and Fluid Science, 2021, 126: 110395. DOI: 10.1016/j.expthermflusci.2021.110395.
    [49] FAGHIH M, GOU X L, CHEN Z. The explosion characteristics of methane, hydrogen and their mixtures: a computational study [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 131–138. DOI: 10.1016/j.jlp.2015.12.015.
    [50] MOVILEANU C, RAZUS D, OANCEA D. Additive effects on the rate of pressure rise for ethylene-air deflagrations in closed vessels [J]. Fuel, 2013, 111: 194–200. DOI: 10.1016/j.fuel.2013.04.053.
    [51] RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel [J]. Journal of Hazardous Materials, 2011, 190(1): 891–896. DOI: 10.1016/j.jhazmat.2011.04.018.
    [52] SUN Z Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures [J]. International Journal of Hydrogen Energy, 2019, 44(1): 469–476. DOI: 10.1016/j.ijhydene.2018.02.094.
    [53] LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. DOI: 10.1016/j.fuel.2018.06.042.
    [54] WANG T, LIANG H, LIN J J, et al. The explosion thermal behavior of H2/CH4/air mixtures in a closed 20 L vessel [J]. International Journal of Hydrogen Energy, 2022, 47(2): 1390–1400. DOI: 10.1016/j.ijhydene.2021.10.092.
    [55] CAMMAROTA F, DI BENEDETTO A, DI SARLI V, et al. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5): 607–613. DOI: 10.1016/j.jlp.2009.05.001.
    [56] SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. DOI: 10.1016/j.applthermaleng.2017.04.040.
    [57] LOWESMITH B J, HANKINSON G, JOHNSON D M. Vapour cloud explosions in a long congested region involving methane/hydrogen mixtures [J]. Process Safety and Environmental Protection, 2011, 89(4): 234–247. DOI: 10.1016/j.psep.2011.04.002.
    [58] SHIRVILL L C, ROBERTS T A, ROYLE M, et al. Experimental study of hydrogen explosion in repeated pipe congestion-part 2: effects of increase in hydrogen concentration in hydrogen-methane-air mixture [J]. International Journal of Hydrogen Energy, 2019, 44(5): 3264–3276. DOI: 10.1016/j.ijhydene.2018.12.021.
    [59] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.

    ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017.
    [60] ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. DOI: 10.1016/j.psep.2020.04.025.
    [61] SHI L, MENG X B, WU Y. Numerical study on the propagation of CH4/H2 flame in a pipeline under different H2 enrichment conditions [J]. Journal of Cleaner Production, 2023, 423: 138689. DOI: 10.1016/j.jclepro.2023.138689.
    [62] 董冰岩, 查裕学, 邹颖, 等. 球形压力容器中甲烷-氢气-空气爆炸过程数值模拟及实验研究 [J]. 中国安全生产科学技术, 2023, 19(3): 157–163. DOI: 10.11731/j.issn.1673-193x.2023.03.023.

    DONG B Y, ZHA Y X, ZOU Y, et al. Numerical simulation and experimental study of methane-hydrogen-air explosion process in spherical pressure vessel [J]. Journal of Safety Science and Technology, 2023, 19(3): 157–163. DOI: 10.11731/j.issn.1673-193x.2023.03.023.
    [63] CICORIA D, CHAN C K. Large eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers [J]. International Journal of Hydrogen Energy, 2016, 41(47): 22479–22496. DOI: 10.1016/j.ijhydene.2016.09.051.
    [64] BO Y F, LI Y C, GAO W. Exploring the effects of turbulent field on propagation behaviors in confined hydrogen-air explosion using OpenFOAM [J]. International Journal of Hydrogen Energy, 2024, 50: 912–927. DOI: 10.1016/j.ijhydene.2023.07.303.
    [65] WANG Y, ZHANG X, LI Y F. Numerical simulation of methane-hydrogen-air premixed combustion in turbulence [J]. International Journal of Hydrogen Energy, 2023, 48(19): 7122–7133. DOI: 10.1016/j.ijhydene.2022.05.167.
    [66] LEI B W, WEI Q N, PANG R H, et al. The effect of hydrogen addition on methane/air explosion characteristics in a 20-L spherical device [J]. Fuel, 2023, 338: 127351. DOI: 10.1016/j.fuel.2022.127351.
    [67] LEI B W, XIAO J J, KUZNETSOV M, et al. Effects of heat transfer mechanism on methane-air mixture explosion in 20 L spherical device [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104864. DOI: 10.1016/j.jlp.2022.104864.
    [68] KANURY A M. Combustion: Ⅰ. glassman, second edition, Academic Press, New York, 1987, xxi + 501 pp. , $49.50 [J]. Combustion and Flame, 1988, 71(1): 107–108. DOI: 10.1016/0010-2180(88)90111-3.
    [69] SEMENOV N. Chemical kinetics and chain reactions [M]. London: Oxford University Press, 1935.
    [70] LEWIS B, VON ELBE G. Combustion, flames and explosions of gases [M]. 3rd ed. Orlando: Academic Press, 1987.
    [71] 黎民. 《热爆炸理论》简介 [J]. 爆炸与冲击, 1988, 8(2): 179.
    [72] 周力行. 燃烧理论和化学流体力学 [M]. 北京: 科学普及出版社, 1986.
    [73] 邓凯, 胡锦林, 王明晓, 等. 不同速度波动下氢含量变化对氢气-甲烷钝体火焰燃烧不稳定性的影响 [J]. 推进技术, 2021, 42(1): 185–191. DOI: 10.13675/j.cnki.tjjs.200200.

    DENG K, HU J L, WANG M X, et al. Effects of hydrogen contents change on combustion instability of hydrogen-methane bluff-body flame at different velocities [J]. Journal of Propulsion Technology, 2021, 42(1): 185–191. DOI: 10.13675/j.cnki.tjjs.200200.
    [74] 陈立, 李祥晟. 低旋流CH4/H2火焰的燃烧特性及稳定性机制研究 [J]. 西安交通大学学报, 2017, 51(1): 72–78. DOI: 10.7652/xjtuxb201701012.

    CHEN L, LI X S. Study on the combustion characteristics and stabilization mechanism of low swirl CH4/H2 flame [J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 72–78. DOI: 10.7652/xjtuxb201701012.
    [75] DAMKOHLER G. The effect of turbulence on the flame velocity in gas mixtures: No. 1112 [R]. Washington: NACA, 1947.
    [76] LIPATNIKOV A N, CHOMIAK J. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations [J]. Progress in Energy and Combustion Science, 2002, 28(1): 1–74. DOI: 10.1016/S0360-1285(01)00007-7.
    [77] 赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用 [J]. 中国安全科学学报, 2004, 14(5): 80–83. DOI: 10.3969/j.issn.1003-3033.2004.05.020.

    ZHAO J P, WANG Z C. Application of heat explosion theory to dust explosion mechanism research [J]. China Safety Science Journal, 2004, 14(5): 80–83. DOI: 10.3969/j.issn.1003-3033.2004.05.020.
    [78] 周力行. 论燃烧学发展的几个里程碑 [J]. 热能动力工程, 2023, 38(5): 1–13. DOI: 10.16146/j.cnki.rndlgc.2023.05.001.

    ZHOU L X. On some milestones in the development of combustion theory [J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(5): 1–13. DOI: 10.16146/j.cnki.rndlgc.2023.05.001.
    [79] PARK O, VELOO P S, SHEEN D A, et al. Chemical kinetic model uncertainty minimization through laminar flame speed measurements [J]. Combustion and Flame, 2016, 172: 136–152. DOI: 10.1016/j.combustflame.2016.07.004.
    [80] SU J, WU Y, WANG Y, et al. Skeletal and reduced kinetic models for methane oxidation under engine-relevant conditions [J]. Fuel, 2020, 288: 119667. DOI: 10.1016/j.fuel.2020.119667.
    [81] CONAIRE M, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36(11): 603–622. DOI: 10.1002/kin.20036.
    [82] SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680.
    [83] SU B, LUO Z M, DENG J, et al. Comparative study on methane/air deflagration with hydrogen and ethane additions: investigation from macro and micro perspectives [J]. Process Safety and Environmental Protection, 2023, 174: 561–573. DOI: 10.1016/j.psep.2023.04.030.
    [84] DAGAUT P, NICOLLE A. Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges [J]. Proceedings of the Combustion Institute, 2005, 30(2): 2631–2638. DOI: 10.1016/j.proci.2004.07.030.
    [85] 路长, 刘洋, 王鸿波, 等. CO2、H2对CH4/Air预混气爆炸特性的影响 [J]. 安全与环境学报, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.

    LU C, LIU Y, WANG H B, et al. Experimental study of the effects of CO2/H2 on the characteristic features of methane/air bursts [J]. Journal of Safety and Environment, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.
    [86] SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013.
    [87] ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032.
    [88] ZHANG C, SHEN X B, WEN J X, et al. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition [J]. Fuel, 2020, 265: 116810. DOI: 10.1016/j.fuel.2019.116810.
    [89] SHANG R X, ZHUANG Z X, YANG Y, et al. Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution [J]. International Journal of Hydrogen Energy, 2022, 47(75): 32315–32329. DOI: 10.1016/j.ijhydene.2022.07.099.
    [90] CHEN J N, CHEN G Y, ZHANG A C, et al. Experimental and numerical study on the effect of CO2 dilution on the laminar combustion characteristics of premixed CH4/H2/air flame [J]. Journal of the Energy Institute, 2022, 102: 315–326. DOI: 10.1016/j.joei.2022.04.002.
    [91] ZHANG X, YANG Z, HUANG X, et al. Combustion enhancement and inhibition of hydrogen-doped methane flame by HFC-227ea [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21704–21714. DOI: 10.1016/j.ijhydene.2021.03.250.
    [92] YOSHIDA A, OKAWA T, EBINA W, et al. Experimental and numerical investigation of flame speed retardation by water mist [J]. Combustion and Flame, 2015, 162(5): 1772–1777. DOI: 10.1016/j.combustflame.2014.11.038.
    [93] MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames [J]. Combustion and Flame, 2006, 144(1/2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003.
    [94] SHIMIZU H, TSUZUKI M, YAMAZAKI Y, et al. Experiments and numerical simulation on methane flame quenching by water mist [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 603–608. DOI: 10.1016/S0950-4230(01)00055-9.
    [95] PARRA T, CASTRO F, MÉNDEZ C, et al. Extinction of premixed methane-air flames by water mist [J]. Fire Safety Journal, 2004, 39(7): 581–600. DOI: 10.1016/j.firesaf.2004.05.001.
    [96] THOMAS G O. On the conditions required for explosion mitigation by water sprays [J]. Process Safety and Environmental Protection, 2000, 78(5): 339–354. DOI: 10.1205/095758200530862.
    [97] VAN WINGERDEN K, WILKINS B. The influence of water sprays on gas explosions. part 1: water-spray-generated turbulence [J]. Journal of Loss Prevention in the Process Industries, 1995, 8(2): 53–59. DOI: 10.1016/0950-4230(95)00002-I.
    [98] 夏远辰, 张彬, 王博乔, 等. 超细水雾对氢气-甲烷预混气体爆燃抑制机理的实验研究 [J]. 大连海事大学学报, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.

    XIA Y C, ZHANG B, WANG B Q, et al. Experimental research on suppression mechanism of ultrafine water mist on deflagration of hydrogen-methane premixed gas [J]. Journal of Dalian Maritime University, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.
    [99] WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332–32342. DOI: 10.1016/j.ijhydene.2019.10.110.
    [100] 曹兴岩, 任婧杰, 周一卉, 等. 超细水雾增强与抑制甲烷/空气爆炸的机理分析 [J]. 煤炭学报, 2016, 41(7): 1711–1719. DOI: 10.13225/j.cnki.jccs.2015.1726.

    CAO X Y, REN J J, ZHOU Y H, et al. Analysis on the enhancement and suppression of methane/air explosions by ultrafine water mist [J]. Journal of China Coal Society, 2016, 41(7): 1711–1719. DOI: 10.13225/j.cnki.jccs.2015.1726.
    [101] 章智慧, 王昌建, 刘义, 等. 细水雾与欠膨胀氢气喷射火相互作用的实验研究 [J]. 合肥工业大学学报(自然科学版), 2023, 46(8): 1115–1121. DOI: 10.3969/j.issn.1003-5060.2023.08.017.

    ZHANG Z H, WANG C J, LIU Y, et al. Experimental study of the interaction of water mist with under-expanded hydrogen jet flames [J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(8): 1115–1121. DOI: 10.3969/j.issn.1003-5060.2023.08.017.
    [102] XU Y L, WANG L Y, YU M G, et al. Study on the characteristics of gas explosion affected by induction charged water mist in confined space [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 227–233. DOI: 10.1016/j.jlp.2015.12.027.
    [103] 余明高, 吴丽洁, 万少杰, 等. 含NaCl荷电细水雾对甲烷爆炸火焰传播的抑制特性 [J]. 化工学报, 2017, 68(11): 4445–4452. DOI: 10.11949/j.issn.0438-1157.20170585.

    YU M G, WU L J, WAN S J, et al. Inhibition characteristics on methane explosion flame propagation affected by charged water mist containing sodium chloride additive [J]. CIESC Journal, 2017, 68(11): 4445–4452. DOI: 10.11949/j.issn.0438-1157.20170585.
    [104] YU M G, WAN S J, XU Y L, et al. The influence of the charge-to-mass ratio of the charged water mist on a methane explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 68–76. DOI: 10.1016/j.jlp.2016.03.020.
    [105] CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/j.jlp.2016.06.012.
    [106] LIU L T, LUO Z M, WANG T, et al. Inhibitory effects of water mist containing alkali metal salts on hydrogen-natural gas diffusion flames [J]. International Journal of Hydrogen Energy, 2024, 51: 754–764. DOI: 10.1016/j.ijhydene.2023.03.457.
    [107] WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235.
    [108] 殷永丰. 含磷化合物抑制甲烷火焰的数值分析研究 [D]. 合肥: 中国科学技术大学, 2018.

    YIN Y F. Numerical analysis for the inhibition of phosphorus-containing compounds on methane flame [D]. Hefei: University of Science and Technology of China, 2018.
    [109] 李威. 甲基膦酸二甲酯抑制碳氢火焰的机理研究 [D]. 合肥: 中国科学技术大学, 2019.

    LI W. Study on the inhibiting mechanism of hydrocarbon flames by DMMP [D]. Hefei: University of Science and Technology of China, 2019.
    [110] 余明高, 阳旭峰, 郑凯, 等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势 [J]. 煤炭学报, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.

    YU M G, YANG X F, ZHENG K, et al. Progress and development of coal mine gas explosion suppression and disaster reduction technology in China [J]. Journal of China Coal Society, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.
    [111] LUO Z M, SU Y, CHEN X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration [J]. Fuel, 2019, 257: 116095. DOI: 10.1016/j.fuel.2019.116095.
    [112] 贾宝山, 温海燕, 梁运涛, 等. 受限空间瓦斯爆炸与氢气促进机理研究 [J]. 中国安全科学学报, 2012, 22(2): 81–87. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.016.

    JIA B S, WEN H Y, LIANG Y T, et al. Study on the methane explosion in an enclosed space and hydrogen promoting mechanism [J]. China Safety Science Journal, 2012, 22(2): 81–87. DOI: 10.16265/j.cnki.issn1003-3033.2012.02.016.
    [113] 田莉. 受限空间内氢气/甲烷/空气混合物爆炸特性及抑爆研究 [D]. 杭州: 中国计量大学, 2019.

    TIAN L. Study on characteristics and suppression of hydrogen/methane/air mixture explosion [D]. Hangzhou: China Jiliang University, 2019.
    [114] 苏洋. 氢气/甲烷/空气预混气体爆燃特性及抑制规律研究 [D]. 焦作: 河南理工大学, 2018.

    SU Y. Study on the deflagration characteristics and suppression of hydrogen/methane/air premixed gas [D]. Jiaozuo: Henan Polytechnic University, 2018.
    [115] CHEN X F, ZHANG Y, ZHANG Q M, et al. Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders [J]. Theoretical and Applied Mechanics Letters, 2011, 1(3): 032004. DOI: 10.1063/2.1103204.
    [116] 程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.

    CHENG F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.
    [117] LI Y, CHEN X F, YUAN B H, et al. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion [J]. Fuel, 2022, 329: 125401. DOI: 10.1016/j.fuel.2022.125401.
    [118] LIU A H, LU X E, ZHOU X Y, et al. Experimental investigation on suppression of methane explosion using KHCO3/zeolite composite powder [J]. Powder Technology, 2023, 415: 118157. DOI: 10.1016/j.powtec.2022.118157.
    [119] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031.
    [120] SUN Y R, YUAN B H, CHEN X F, et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor [J]. Powder Technology, 2019, 343: 279–286. DOI: 10.1016/j.powtec.2018.11.026.
    [121] 周崇, 喻健良, 刘润杰, 等. 多层网孔结构抑爆性能的研究进展 [J]. 煤矿安全, 2004, 35(3): 6–8. DOI: 10.3969/j.issn.1003-496X.2004.03.003.

    ZHOU C, YU J L, LIU R J, et al. Investigation development of the explosion-suppression characters of multiplayer mesh-hole construction [J]. Safety in Coal Mines, 2004, 35(3): 6–8. DOI: 10.3969/j.issn.1003-496X.2004.03.003.
    [122] LV P F, PANG L, JIN J H, et al. Effects of hydrogen addition on the deflagration characteristics of hydrocarbon fuel/air mixture under a mesh aluminium alloy [J]. International Journal of Hydrogen Energy, 2016, 41(18): 7511–7517. DOI: 10.1016/j.ijhydene.2016.03.084.
    [123] JIN K Q, DUAN Q L, CHEN J Y, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14809–14820. DOI: 10.1016/j.ijhydene.2017.03.232.
    [124] 王硕. 多孔材料对氢气/甲烷预混气体爆炸特性的影响研究 [D]. 重庆: 重庆科技学院, 2021.

    WANG S. Study on the effect of porous materials on the explosion characteristics of premixed hydrogen/methane [D]. Chongqing: Chongqing University of Science and Technology, 2021.
    [125] 唐毅, 员亚龙, 李开源, 等. 球形非金属材料对甲烷掺氢爆炸抑制机理研究 [J]. 高压物理学报, 2022, 36(6): 065202. DOI: 10.11858/gywlxb.20220609.

    TANG Y, YUAN Y L, LI K Y, et al. Explosion suppression performance of spherical non-metallic materials for methane hydrogen-doped syngas explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065202. DOI: 10.11858/gywlxb.20220609.
    [126] DUAN Y L, LONG F Y, LONG J, et al. Exploration of critical hydrogen-mixing ratio of quenching methane/hydrogen mixture deflagration under effect of porous materials in barrier tube [J]. International Journal of Hydrogen Energy, 2023, 48(58): 22288–22301. DOI: 10.1016/j.ijhydene.2023.03.157.
    [127] 苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响 [J]. 化工进展, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.

    SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.
    [128] 郑露露, 龙凤英, 温子阳, 等. 多孔材料-CO2对CH4/H2抑爆失效研究 [J]. 安全, 2022, 43(9): 24–30, 36. DOI: 10.19737/j.cnki.issn1002-3631.2022.09.003.

    ZHENG L L, LONG F Y, WEN Z Y, et al. Study on explosion suppression failure of porous material-CO2 to CH4/H2 [J]. Safety & Security, 2022, 43(9): 24–30, 36. DOI: 10.19737/j.cnki.issn1002-3631.2022.09.003.
    [129] 郑露露, 段玉龙, 李泽欢, 等. 多孔介质和CO2抑制低氢比甲烷爆炸的效应研究 [J]. 消防科学与技术, 2023, 42(8): 1051–1056. DOI: 10.3969/j.issn.1009-0029.2023.08.005.

    ZHENG L L, DUAN Y L, LI Z H, et al. Effect of porous media and CO2 on inhibiting methane explosion with low hydrogen ratio [J]. Fire Science and Technology, 2023, 42(8): 1051–1056. DOI: 10.3969/j.issn.1009-0029.2023.08.005.
    [130] ZHANG T W, ZHANG S S, LIU H, et al. Experimental research on combustible gas/air explosion inhibition by dry water [J]. International Journal of Hydrogen Energy, 2023, 48(93): 36605–36620. DOI: 10.1016/j.ijhydene.2023.06.053.
  • 加载中
图(11)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  62
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2023-10-15
  • 网络出版日期:  2023-12-25
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回