HMX基含铝压装炸药慢速烤燃点火时刻的压力参量计算

郭璐 智小琦 屈可朋 柳星河 贾杰 李劲

郭璐, 智小琦, 屈可朋, 柳星河, 贾杰, 李劲. HMX基含铝压装炸药慢速烤燃点火时刻的压力参量计算[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0353
引用本文: 郭璐, 智小琦, 屈可朋, 柳星河, 贾杰, 李劲. HMX基含铝压装炸药慢速烤燃点火时刻的压力参量计算[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0353
GUO Lu, ZHI Xiaoqi, QU Kepeng, LIU Xinghe, JIA Jie, LI Jin. Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives during slow cook-off[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0353
Citation: GUO Lu, ZHI Xiaoqi, QU Kepeng, LIU Xinghe, JIA Jie, LI Jin. Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives during slow cook-off[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0353

HMX基含铝压装炸药慢速烤燃点火时刻的压力参量计算

doi: 10.11883/bzycj-2023-0353
详细信息
    作者简介:

    郭 璐(1997- ),男,硕士研究生,490246049@qq.com

    通讯作者:

    智小琦(1965- ),女,博士,教授,zxq4060@sina.com

  • 中图分类号: O381

Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives during slow cook-off

  • 摘要: 为了研究HMX基含铝压装炸药在慢烤过程中点火时刻的压力参量,设计了0.1和1 ℃/min升温速率下的慢烤试验,并对炸药内部进行了多点测温。在此基础上,基于炸药的通用烤燃模型,将HMX的多步分解机制与铝粉反应相结合,并考虑其分解中的相变过程,建立了HMX基含铝压装炸药慢烤反应速率与压力相关的计算模型并进行数值模拟研究。试验结果表明,在0.1 ℃/min的升温速率下,端盖喷出,壳体沿轴向撕开裂缝,无药粉残留,判定炸药发生爆燃反应;在1 ℃/min的升温速率下,壳体发生轻微变形,有部分药粉残留,判定炸药发生燃烧反应。数值研究结果表明,随着热刺激强度的提高,炸药的点火温度呈对数上升趋势,而烤燃弹的反应进度和内部压力呈现指数下降趋势,且烤燃弹内部的反应压力在HMX相变前呈缓慢上升趋势,相变后呈快速上升趋势。
  • 图  1  烤燃弹结构示意图

    Figure  1.  Schematic diagram of the structure of cook-off bomb

    图  2  慢速烤燃试验残骸照片[14]

    Figure  2.  Scrap photographs for slow cook-off test[14]

    图  3  不同升温速率下炸药各测点温度‐时间曲线

    Figure  3.  Temperature-time curves of explosives at various monitoring points under different heating rates

    图  4  网格模型

    Figure  4.  Grid model

    图  5  不同升温速率下监测点温度及弹体内部压力曲线

    Figure  5.  Curves of monitoring-point temperature and internal pressure of the bomb at different heating rates

    图  6  气体产物物质的量-时间曲线

    Figure  6.  Amount of gas substance-time curves

    图  7  HMX反应速率‐时间曲线

    Figure  7.  Reaction rate-time curves of HMX

    图  8  不同升温速率下点火时刻温度梯度示意图

    Figure  8.  Temperature gradient diagram of ignition moment at different heating rates

    图  9  点火时刻烤燃弹体中轴线上的温度分布

    Figure  9.  Temperature distribution on the central axis of the cook-off bomb at ignition moment

    图  10  不同热刺激强度下烤燃弹点火时刻温度及内部压力曲线

    Figure  10.  Temperature and internal pressure curves of the cook-off bomb at ignition moment under different thermal stimulation intensities

    图  11  不同热刺激强度下烤燃弹点火时刻的温度分布

    Figure  11.  Temperature distribution in the cook-off bomb at ignition moment under different thermal stimulation intensities

    图  12  不同热刺激强度下烤燃弹反应进度曲线

    Figure  12.  Extents of reaction of the cook-off bomb under different thermal stimulation intensities

    表  1  点火时刻及点火时刻不同测点的温度

    Table  1.   Ignition moments as well as temperatures of different measuring pointsat ignition moments

    升温速率/(℃·min−1)点火时刻/sT1/℃T2/℃T3/℃
    0.143920203.9220.2205.3
    110740209221.9230.4
     注:T1、T2T3分别为点火时刻测点1~3的温度。
    下载: 导出CSV

    表  2  不同网格尺寸模型的数值计算结果

    Table  2.   Numerically-calculated results by the models with different grid sizes

    网格尺寸/mm网格数量外壁温度/℃内部压力/MPa
    0.32806242215.2610.65
    0.41196698215.2710.96
    0.5734650214.9311.26
    下载: 导出CSV

    表  3  两种升温速率下点火时间及监测点温度计算值与试验值的对比

    Table  3.   Comparison of calculated and experimental values of ignition time and temperatureat monitoring points under two different heating rates

    升温速率/
    (℃·min−1)
    点火时间 T1 T2 T3
    试验值/s 计算值/s 误差/% 试验值/℃ 计算值/℃ 误差/% 试验值/℃ 计算值/℃ 误差/% 试验值/℃ 计算值/℃ 误差/%
    0.1 43920 42100 4.14 203.9 200.39 1.72 220.2 218.97 0.56 205.3 213.34 −3.92
    1 10740 11160 −3.91 209.0 214.93 −2.84 221.9 227.26 −2.42 230.4 228.40 0.87
    下载: 导出CSV
  • [1] 曾稼, 智小琦, 于永利, 等. 热刺激强度对DNAN基熔铸炸药烤燃响应特性的影响 [J]. 火炸药学报, 2018, 41(2): 131–136. DOI: 10.14077/j.issn.1007-7812.2018.02.005.

    ZENG J, ZHI X Q, YU Y L, et al. Effect of thermal stimulation intensity on cook-off response characteristics of DNAN based casting explosives [J]. Chinese Journal of Explosives and Propellants, 2018, 41(2): 131–136. DOI: 10.14077/j.issn.1007-7812.2018.02.005.
    [2] 李凌峰, 韩秀凤, 沈飞, 等. 典型约束环境下HMX基温压炸药内爆释能特性 [J]. 火工品, 2022(2): 48–53. DOI: 10.3969/j.issn.1003-1480.2022.02.011.

    LI L F, HAN X F, SHEN F, et al. Internal explosion energy release characteristics of HMX-based thermos-baric explosive in typical confined environment [J]. Initiators and Pyrotechnics, 2022(2): 48–53. DOI:103969/j.issn.1003-1480.2022.02.011. DOI: 10.3969/j.issn.1003-1480.2022.02.011.
    [3] 智小琦, 胡双启, 李娟娟, 等. 不同约束条件下钝化RDX的烤燃响应特性 [J]. 火炸药学报, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.

    ZHI X Q, HU S Q, LI J J, et al. Cook-off response characteristics of desensitizing RDX explosive under different restriction conditions [J]. Chinese Journal of Explosives and Propellants, 2009, 32(3): 22–24,34. DOI: 10.3969/j.issn.1007-7812.2009.03.007.
    [4] 董泽霖, 屈可朋, 胡雪垚, 等. 约束方式和强度对HMX基压装含铝炸药慢烤响应特性的影响 [J]. 火炸药学报, 2023, 46(10): 897–904. DOI: 10.14077/j.issn.1007-7812.202212010.

    DONG Z L, QU K P, HU X Y, et al. Effect of restraint mode and strength on slow cook-off response characteristics of HMX-based pressed aluminized explosives [J]. Chinese Journal of Explosives and Propellants., 2023, 46(10): 897–904. DOI: 10.14077/j.issn.1007-7812.202212010.
    [5] 沈飞, 王胜强, 王辉. 不同约束条件下HMX基含铝炸药的慢烤响应特性 [J]. 火炸药学报, 2019, 42(4): 385–390. DOI: 10.14077/7812.2019.04.012.

    SHEN F, WANG S Q, WANG H. Slow cook-off response characteristics of HMX-based aluminized explosives under different constraint conditions [J]. Chinese Journal of Explosives and Propellants, 2019, 42(4): 385–390. DOI: 10.14077/7812.2019.04.012.
    [6] 智小琦, 胡双启. 炸药装药密度对慢速烤燃响应特性的影响 [J]. 爆炸与冲击, 2013, 33(2): 221–224. DOI: 10.11883/1001-1455(2013)02-0221-04.

    ZHI X Q, HU S Q. Influences of charge densities on responses of explosives to slow cook-off [J]. Explosion and Shock Waves, 2013, 33(2): 221–224. DOI: 10.11883/1001-1455(2013)02-0221-04.
    [7] 赵亮. 尺寸效应对炸药烤燃响应特性影响的研究[D]. 太原: 中北大学, 2018.

    ZHAO L. Research on the effect of size effect on the flaming characteristics of explosives [D]. Taiyuan: North University of China, 2018.
    [8] 刘子德, 智小琦, 王帅, 等. 几何尺寸对DNAN基熔铸炸药慢烤响应特性的影响 [J]. 火炸药学报, 2019, 42(1): 63–68. DOI: 10.14077/j.issn.1007-7812.2019.01.010.

    LIU Z D, ZHI X Q, WANG S, et al. Effect of geometric dimensions on slow cook-off response characteristics of DNAN-based melt-casting explosive [J]. Chinese Journal of Explosives and Propellants, 2019, 42(1): 63–68. DOI: 10.14077/j.issn.1007-7812.2019.01.010.
    [9] 马欣, 陈朗, 鲁峰, 等. 烤燃条件下HMX/TATB基混合炸药多步热分解反应计算 [J]. 爆炸与冲击, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.

    MA X, CHEN L, LU F, et al. Calculation on multi-step thermal decomposition of HMX- and TATB-based composite explosives under cook-off conditions [J]. Explosion and Shock Waves, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.
    [10] DICKSON P M, ASAY B W, HENSON B F, et al. Measurement of phase change and thermal decomposition kinetics during cookoff of PBX9501 [J]. AIP Conference Proceedings, 2000, 505(1): 837–840.
    [11] PERRY W L , GUNDERSON J A , DICKSON P M . Application of a four-step HMX kinetic model to an impact-induced fraction ignition problems[C]//14th International Detonation Symposium. Coeur d'Alene, Idaho, United States, 2010.
    [12] HOBBS M L, KANESHIGE M J, ERIKSON W W. A universal cookoff model for explosives[C]//50th International Annual Conference of the Fraunhofer ICT. Karlsruhe, Germany, 2019.
    [13] 范士锋, 董平, 李鑫, 等. 国外海军弹药安全性研究进展 [J]. 火炸药学报, 2017, 40(2): 101–106. DOI: 10.14077/j.issn.1007-7812.2017.02.019.

    FAN S F, DONG P, LI X, et al. Research progress in the safety of foreign naval ammunition [J]. Chinese Journal of Explosives and Propellants, 2017, 40(2): 101–106. DOI: 10.14077/j.issn.1007-7812.2017.02.019.
    [14] 董泽霖, 屈可朋, 胡雪垚, 等. 升温速率对HMX基大长径比压装装药烤燃特性的影响研究 [J]. 火工品, 2023(4): 56–60. DOI: 10.3969/j.issn.1003-1480.2023.04.011.

    DONG Z L, QU K P, HU X Y, et al. Study on the effect of heating rate on the cook-off characteristics of HMX-based pressure charge with large aspect ratio [J]. Initiators and Pyrotechnics, 2023(4): 56–60. DOI: 10.3969/j.issn.1003-1480.2023.04.011.
    [15] 封雪松, 冯晓军, 赵娟, 等. 铝粉含量和粒度对HMX基炸药空爆性能的影响 [J]. 爆破器材, 2018, 47(4): 10–15. DOI: 10.3969/j.issn.1001-8352.2018.04.002.

    FENG X S, FENG X J, ZHAO J, et al. Effect of content and particle size of aluminum powder on the air blast property of HMX-based explosive [J]. Explosive Materials, 2018, 47(4): 10–15. DOI: 10.3969/j.issn.1001-8352.2018.04.002.
    [16] HOBBS M L, KANESHIGE M J. Ignition experiments and models of a plastic bonded explosive (PBX 9502) [J]. The Journal of Chemical Physics, 2014, 140(12): 124203. DOI: 10.1063/1.4869351.
    [17] HENSON B F, SMILOWITZ L, ASAY B W, et al. The β-δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. The Journal of Chemical. Physics., 2002, 117(8): 3780–3788. DOI: 10.1063/1.1495398.
    [18] 周建兴, 刘瑞祥, 陈立亮, 等. 凝固过程数值模拟中的潜热处理方法 [J]. 铸造, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.

    ZHOU J X, LIU R X, CHEN L L, et al. The approaches of latent heat treatment [J]. Foundry, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.
    [19] HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
    [20] TARVER C M, TRAN T D. Thermal decomposition models for HMX-based plastic bonded explosives [J]. Combustion and Flame, 2004, 137(1/2): 50–62. DOI: 10.1016/j.combustflame.2004.01.002.
    [21] BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [22] 韦世豪, 杜扬, 王世茂, 等. 不同形状受限空间内油气爆燃特性的实验研究 [J]. 中国安全生产科学技术, 2017, 13(5): 41–47. DOI: 10.11731/j.issn.1673-193x.2017.05.007.

    WEI S H, DU Y, WANG S M, et al. Experimental study on deflagration characteristics of gasoline-air mixture in confined space with different shapes [J]. Journal of Safety Science and Technology, 2017, 13(5): 41–47. DOI: 10.11731/j.issn.1673-193x.2017.05.007.
    [23] 傅献彩, 沈文霞, 姚天扬, 等. 物理化学(上)[M]. 5版. 北京: 高等教育出版社, 2005: 99-103.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  11
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2024-03-26
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回