不同波纹钢-混凝土板复合结构水下抗爆机理及损伤等级预测

曹克磊 付乔峰 赵瑜

曹克磊, 付乔峰, 赵瑜. 不同波纹钢-混凝土板复合结构水下抗爆机理及损伤等级预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0366
引用本文: 曹克磊, 付乔峰, 赵瑜. 不同波纹钢-混凝土板复合结构水下抗爆机理及损伤等级预测[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0366
CAO Kelei, FU Qiaofeng, ZHAO Yu. Underwater anti-explosion mechanism and damage grade prediction of different corrugated steel-concrete slab composite structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0366
Citation: CAO Kelei, FU Qiaofeng, ZHAO Yu. Underwater anti-explosion mechanism and damage grade prediction of different corrugated steel-concrete slab composite structures[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0366

不同波纹钢-混凝土板复合结构水下抗爆机理及损伤等级预测

doi: 10.11883/bzycj-2023-0366
基金项目: 国家自然科学基金(51979188);河南省高等学校重点科研项目(24A570002);天津大学水利工程智能建设与运维全国重点实验室开放基金(HESS-2230);华北水利水电大学博士引进人才科研启动基金(40921)
详细信息
    作者简介:

    曹克磊(1990- ),男,博士,讲师,caokelei456@163.com

  • 中图分类号: 0383

Underwater anti-explosion mechanism and damage grade prediction of different corrugated steel-concrete slab composite structures

  • 摘要: 为探究不同波纹钢-混凝土板复合结构的水下抗爆机理,采用光滑粒子流体动力学与有限单元(FEM-SPH)耦合方法模拟混凝土板在水下接触爆炸下的损伤过程,并与试验结果对比,以验证数值方法的有效性;采用FEM-SPH方法探究不同防护方案下墙面板毁伤过程及失效模式,揭示其水下防爆机理,并构建出墙面板损伤等级预测曲线。研究结果表明:模拟结果与试验结果较为吻合,验证了模拟方法的有效性;在含12 mm厚波纹钢的复合结构(T-12)、含75°夹角的波纹钢复合结构(A-75)和含厚70 mm波纹钢的复合结构(WH-70)三种防护方案下,墙面板的毁伤范围较未加固墙面板最大降幅分别为83.0%、81.6%和82.5%;预测曲线可以直观评估出炸药量和复合结构中波纹钢波高变化对墙面板损伤等级的影响。
  • 图  1  不同数值算法基本原理

    Figure  1.  Basic principles of different numerical algorithms

    图  2  水下接触爆炸试验模型尺寸及钢筋布置方式

    Figure  2.  Underwater contact explosion test model size and reinforcement arrangement

    图  3  数值模型

    Figure  3.  Numerical model

    图  4  试验结果与数值结果对比

    Figure  4.  Comparison of experimental results and numerical results

    图  5  数值模型(单位:mm)

    Figure  5.  Numerical model (unit: mm)

    图  6  混凝土板钢筋布置图

    Figure  6.  Reinforcement layout of concrete slab

    图  7  波纹钢截面(单位:mm)

    Figure  7.  Corrugated steel sectio (unit: mm)

    图  8  整体结构的毁伤过程

    Figure  8.  Damage process of the integral structure

    图  9  波纹钢的毁伤过程

    Figure  9.  Damage process of the corrugated metal

    图  10  墙面板的毁伤过程

    Figure  10.  Damage process of the wall shingle

    图  11  结构毁伤机理

    Figure  11.  Damage mechanism of structure

    图  12  未加固墙面板毁伤模式

    Figure  12.  Damage mode of unreinforced wall panel

    图  13  波纹钢厚度对整体结构毁伤模式的影响

    Figure  13.  Damage modes of the intergral structure due to different thicknesses of the corrugated steel

    图  14  波纹钢厚度对波纹钢毁伤模式的影响

    Figure  14.  Damage modes of the corrugated steel due to different thicknesses of the corrugated steel

    图  15  波纹钢厚度对墙面板毁伤模式的影响

    Figure  15.  Damage modes of the wall shingle due to different thicknesses of the corrugated steel

    图  16  波纹钢夹角对整体结构毁伤模式的影响

    Figure  16.  Damage modes of the integral structure due to different angles of the corrugated steel

    图  17  波纹钢夹角对波纹钢毁伤模式的影响

    Figure  17.  Damage modes of the corrugated steel due to different angles of the corrugated steel

    图  18  波纹钢夹角对墙面板毁伤模式的影响

    Figure  18.  Damage modes of the wall shingle due to different angles of the corrugated steel

    图  19  波纹钢波高对墙面板毁伤模式的影响

    Figure  19.  Damage modes of the intergral structure due to different wave heights of the corrugated steel

    图  20  波纹钢波高对波纹钢毁伤模式的影响

    Figure  20.  Damage modes of the corrugated steel due to different wave heights of the corrugated steel

    图  21  波纹钢波高对墙面板毁伤模式的影响

    Figure  21.  Damage modes of the wall shingle due to different wave heights of the corrugated steel

    图  22  无加固结构的钢筋轴力分布

    Figure  22.  Axial force distribution of steel bar without reinforced structure

    图  23  波纹钢厚度对钢筋轴力分布的影响

    Figure  23.  Axial force distribution of steel bar due to different thicknesses of the corrugated steel

    图  24  波纹钢夹角对钢筋轴力分布的影响

    Figure  24.  Axial force distribution of steel bar due to different angles of the corrugated steel

    图  25  波纹钢波高对钢筋轴力分布的影响

    Figure  25.  Axial force distribution of steel bar due to different wave heights of the corrugated steel

    图  26  破坏类型

    Figure  26.  Damage types

    图  27  波纹钢厚度对墙面板破坏深度的影响

    Figure  27.  Damage depths of wall panel due to different thicknesses

    图  28  波纹钢夹角对墙面板破坏深度的影响

    Figure  28.  Damage depths of wall panel due to different angles

    图  29  波纹钢波高对墙面板破坏深度的影响

    Figure  29.  Damage depths of wall panel due to different wave heights

    图  30  墙面板损伤等级与波纹钢厚度关系预测曲线

    Figure  30.  Prediction curve of the relationship between the damage level of wall panel and the thickness of corrugated steel

    图  31  墙面板损伤等级与波纹钢夹角关系预测曲线

    Figure  31.  Prediction curve of relationship between damage grade of wall panel and angle of corrugated steel

    图  32  墙面板损伤等级与波纹钢波高关系预测曲线

    Figure  32.  Prediction curve of relationship between damage grade of wall panel and wave height of corrugated steel

    表  1  炸药材料参数

    Table  1.   Material parameters of the explosive

    ρ1/(g·cm−3 A1/MPa B1/MPa R1 R2 ω1
    1.63 373.77 3.75 4.15 0.9 0.35
    下载: 导出CSV

    表  2  水体材料参数

    Table  2.   Material parameters of water

    ρ2/(g·cm−3)c/(m·s−1)S1S2S3γ0a
    1.024171.41001.00
    下载: 导出CSV

    表  3  钢筋材料参数

    Table  3.   Material parameters corrugated steel

    ρ3/(g·cm−3)A2/GPaB2/GPaNCmTm
    7.850.3450.3360.420.0261.41720
     注:A2B2N为参考应变率$ {\dot{\varepsilon }}_{0} $和参考温度$ {T}_{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{m}} $下的材料初始屈服应力、应变硬化模量和硬化指数,C为材料应变率强化参数,m为材料热软化参数,$ {T}_{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{m}} $为室温,$ {T}_{\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{t}} $为熔点。
    下载: 导出CSV

    表  4  墙面板背爆面剥落区

    Table  4.   Spalling area of back surface of wall panel

    方案 最大直径/mm 最大宽度/mm 方案 最大直径/mm 最大宽度/mm 方案 最大直径/mm 最大宽度/mm
    T-3 221 180 A-30 285 154 WH-10 281 251
    T-6 210 151 A-45 221 180 WH-30 241 220
    T-9 191 130 A-60 211 131 WH-50 221 180
    T-12 180 100 A-75 185 105 WH-70 181 105
     注:未加固结构剥落区的最大直径和最大宽度分别为330和320 mm。
    下载: 导出CSV
  • [1] 许迎亮, 刘彦, 闫俊伯, 等. 双装药同步爆炸钢筋混凝土梁毁伤效应 [J]. 兵工学报, 2023, 44(12): 3719–3732. DOI: 10.12382/bgxb.2023.0286.

    XU Y L, LIU Y, YAN J B, et al. The damage effect of reinforced concrete beams subjected to synchronous explosion of double charges [J]. Acta Armamentarii, 2023, 44(12): 3719–3732. DOI: 10.12382/bgxb.2023.0286.
    [2] 赵小华, 刘树参, 方宏远, 等. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果 [J]. 爆炸与冲击, 2023, 43(12): 125102. DOI: 10.11883/bzycj-2023-0033.

    ZHAO X H, LIU S S, FANG H Y, et al. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion [J]. Explosion and Shock Waves, 2023, 43(12): 125102. DOI: 10.11883/bzycj-2023-0033.
    [3] 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析 [J]. 中国舰船研究, 2023, 18(2): 55–63. DOI: 10.19693/j.issn.1673-3185.02835.

    YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion [J]. Chinese Journal of Ship Research, 2023, 18(2): 55–63. DOI: 10.19693/j.issn.1673-3185.02835.
    [4] 杨谨鸿, 李秀地, 张波, 等. 近距离爆炸下ECC涂层加固砌体填充墙抗爆性能研究 [J]. 振动与冲击, 2023, 42(16): 10–18. DOI: 10.13465/j.cnki.jvs.2023.16.002.

    YANG J H, LI X D, ZHANG B, et al. Anti-explosion performance of ECC coating for strengthening masonry infilled wall under close-in explosion [J]. Journal of Vibration and Shock, 2023, 42(16): 10–18. DOI: 10.13465/j.cnki.jvs.2023.16.002.
    [5] 廖维张, 刘锴鑫, 张春磊, 等. 高强钢丝绳网片-聚合物砂浆加固RC板抗爆性能试验研究 [J]. 振动与冲击, 2021, 40(2): 235–242. DOI: 10.13465/j.cnki.jvs.2021.02.032.

    LIAO W Z, LIU K X, ZHANG C L, et al. Blast resistant performance of reinforced concrete slabs strengthened with high strength steel wire mesh and polymer mortar [J]. Journal of Vibration and Shock, 2021, 40(2): 235–242. DOI: 10.13465/j.cnki.jvs.2021.02.032.
    [6] ZHAO C J, TANG Z X, WANG P, et al. Blast responses of shallow-buried prefabricated modular concrete tunnels reinforced by BFRP-steel bars [J]. Underground Space, 2022, 7(2): 184–198. DOI: 10.1016/J.UNDSP.2021.07.004.
    [7] YANG G D, WANG G H, LU W B, et al. Cross-section shape effects on anti-knock performance of RC columns subjected to air and underwater explosions [J]. Ocean Engineering, 2019, 181: 252–266. DOI: 10.1016/j.oceaneng.2019.04.031.
    [8] ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean Engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
    [9] 吕晋贤, 吴昊, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议 [J]. 建筑结构学报, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454.

    LÜ J X, WU H, FANG Q. Collapse analysis and design recommendations of high-rise frame structures under blast loadings [J]. Journal of Building Structures, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454.
    [10] ELVELI B S, VESTRUM O, HAUGE K O, et al. Thin steel plates exposed to combined ballistic impact and partially confined airblast loading [J]. Engineering Failure Analysis, 2023, 144: 106943. DOI: 10.1016/J.ENGFAILANAL.2022.106943.
    [11] LAI J Z, LI H J, YIN X X, et al. Properties and simulation of UHPC and FGCC subjected to the coupling of penetration and explosion [J]. Journal of Materials in Civil Engineering, 2021, 33(6): 04021109. DOI: 10.1061/(ASCE)MT.1943-5533.0003665.
    [12] 杨建华, 吴泽南, 姚池, 等. 地应力对岩石爆破开裂及爆炸地震波的影响研究 [J]. 振动与冲击, 2020, 39(13): 64–70,90. DOI: 10.13465/j.cnki.jvs.2020.13.010.

    YANG J H, WU Z N, YAO C, et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves [J]. Journal of Vibration and Shock, 2020, 39(13): 64–70,90. DOI: 10.13465/j.cnki.jvs.2020.13.010.
    [13] CUI Y, LI Z J, FANG J, et al. Crater effects of shallow burial explosions in soil based on SPH-FEM analysis [J]. Frontiers in Earth Science, 2023, 10: 1114178. DOI: 10.3389/FEART.2022.1114178.
    [14] PAN G C, SU H, LI X X, et al. Coupled FEM-SPH simulation of the protective properties for metal/ceramic composite armor [J]. International Journal of Lightweight Materials and Manufacture, 2023, 6(4): 543–551. DOI: 10.1016/J.IJLMM.2023.05.007.
    [15] WANG Z L, HUANG Y P, LI S Y, et al. SPH-FEM coupling simulation of rock blast damage based on the determination and optimization of the RHT model parameters [J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(4): 042035. DOI: 10.1088/1755-1315/570/4/042035.
    [16] ZHAO X H, WANG G H, LU W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 190–204. DOI: 10.1080/19648189.2018.1528892.
    [17] ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [18] ZHAO C F, HE K C, ZHI L H, et al. Blast behavior of steel-concrete-steel sandwich panel: experiment and numerical simulation [J]. Engineering Structures, 2021, 246: 112998. DOI: 10.1016/J.ENGSTRUCT.2021.112998.
    [19] XU Q, CHEN J Y, LI J, et al. Numerical study on antiknock measures of concrete gravity dam bearing underwater contact blast loading [J]. Journal of Renewable and Sustainable Energy, 2018, 10(1): 014101. DOI: 10.1063/1.4986330.
    [20] HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion [J]. Ocean Engineering, 2020, 195: 106671. DOI: 10.1016/j.oceaneng.2019.106671.
    [21] 李超. 柱面网壳结构在内爆炸下的失效机理和防爆方法 [D]. 泉州: 华侨大学, 2016.

    LI C. Study on failure mechanism and explosion-proof method for cylindrical shell under internal explosion [D]. Quanzhou: Huaqiao University, 2016.
    [22] ZHOU X Q, HAO H. Numerical prediction of reinforced concrete exterior wall response to blast loading [J]. Advances in Structural Engineering, 2008, 11(4): 355–367. DOI: 10.1260/136943308785836826.
    [23] LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
  • 加载中
图(32) / 表(4)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  27
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2024-01-26
  • 网络出版日期:  2024-03-06

目录

    /

    返回文章
    返回