TA2/AZ31B/2024Al爆炸焊接复合板界面微观结构特征及其动态力学性能

梁汉良 罗宁 陈彦龙 芮天安 潘玉龙

梁汉良, 罗宁, 陈彦龙, 芮天安, 潘玉龙. TA2/AZ31B/2024Al爆炸焊接复合板界面微观结构特征及其动态力学性能[J]. 爆炸与冲击, 2024, 44(4): 045301. doi: 10.11883/bzycj-2023-0367
引用本文: 梁汉良, 罗宁, 陈彦龙, 芮天安, 潘玉龙. TA2/AZ31B/2024Al爆炸焊接复合板界面微观结构特征及其动态力学性能[J]. 爆炸与冲击, 2024, 44(4): 045301. doi: 10.11883/bzycj-2023-0367
LIANG Hanliang, LUO Ning, CHEN Yanlong, RUI Tianan, PAN Yulong. Interfacial microstructure characteristics and dynamic mechanical properties of TA2/AZ31B/2024Al explosively-welded composite plates[J]. Explosion And Shock Waves, 2024, 44(4): 045301. doi: 10.11883/bzycj-2023-0367
Citation: LIANG Hanliang, LUO Ning, CHEN Yanlong, RUI Tianan, PAN Yulong. Interfacial microstructure characteristics and dynamic mechanical properties of TA2/AZ31B/2024Al explosively-welded composite plates[J]. Explosion And Shock Waves, 2024, 44(4): 045301. doi: 10.11883/bzycj-2023-0367

TA2/AZ31B/2024Al爆炸焊接复合板界面微观结构特征及其动态力学性能

doi: 10.11883/bzycj-2023-0367
基金项目: 国家自然科学基金(12072363,12372373);爆破工程湖北省重点实验室开放基金(BL2021-03)
详细信息
    作者简介:

    梁汉良(1996- ),男,博士研究生,liang_hanliang@cumt.edu.cn

    通讯作者:

    罗 宁(1980- ),男,博士,教授,博士生导师,nluo@cumt.edu.cn

  • 中图分类号: O382; TG456.6

Interfacial microstructure characteristics and dynamic mechanical properties of TA2/AZ31B/2024Al explosively-welded composite plates

  • 摘要: 运用平行法爆炸焊接工艺,开展了TA2/AZ31B/2024Al多层轻质金属板材爆炸焊接实验。通过扫描电镜、电子背散射衍射、分离式霍普金森压杆及三维轮廓扫描等测试技术,对多层爆炸焊接复合板界面微观结构特征、材料物相变化规律、复合板材动态力学性能及材料冲击断口特征开展了系统研究。研究结果表明:焊后多层轻质金属复合板的4个焊接界面均呈现出爆炸焊接特有的波形结构特征,结合界面处无明显缺陷,总体焊接质量良好。结合界面处晶粒发生细化并形成细晶区,1060Al过渡层内晶粒组织由于强塑性变形呈现典型的拉长层状晶粒特征,4个结合界面处均出现明显的变形织构与再结晶织构特征。沿X方向的试样最大动态抗压强度达605 MPa,分层断口界面三维形貌呈现近似水面波纹的独特结构特征。沿Z方向的试样最大动态抗压强度达390 MPa,断口界面三维形貌呈现明显的纤维状韧性断裂特征。
  • 图  1  多层轻质金属复合爆炸焊接实验

    Figure  1.  Multi-layer light metal explosive welding experiment

    图  2  热处理后的多层爆炸焊接复合板及小尺寸表征试样

    Figure  2.  A multilayer explosively-welded composite plate after heat treatmentand a representative mall-sized sample cut from the composite plate

    图  3  SHPB实验试样

    Figure  3.  Samples used in SHPB experiments

    图  4  动态SHPB实验系统

    Figure  4.  Dynamic SHPB experimental system

    图  5  TA2/1060Al结合界面微观结构特征及元素线扫描分析

    Figure  5.  Microstructure characteristics and elemental line scanning analysis of TA2/1060Al joining interface

    图  6  1060Al/2024Al结合界面微观结构特征

    Figure  6.  Microstructure characteristics of 1060Al/2024Al joining interface

    图  7  1060Al/AZ31B结合界面微观结构特征及元素线扫描分析

    Figure  7.  Microstructure characteristics and elemental line scanning analysis of 1060Al/AZ31B joining interface

    图  8  AZ31B/1060Al结合界面微观结构特征及元素线扫描分析

    Figure  8.  Microstructure characteristics and elemental line scanning analysis of AZ31B/1060Al joining interface

    图  9  TA2/1060Al结合界面反极图及再结晶分布图

    Figure  9.  Inverse pole figure and recrystallization distribution mapping of TA2/1060Al joining interface

    图  10  TA2/1060Al结合界面局部取向差图及织构分布图

    Figure  10.  Local misorientation and texture distribution mappings of TA2/1060Al joining interface

    图  11  1060Al/AZ31B结合界面反极图及再结晶分布图

    Figure  11.  Inverse pole figure and recrystallization distribution mapping of 1060Al/AZ31B joining interface

    图  12  1060Al/AZ31B结合界面局部取向差图及织构分布图

    Figure  12.  Local misorientation and texture distribution mappings of 1060Al/AZ31B joining interface

    图  13  AZ31B/1060Al结合界面反极图及再结晶分布图

    Figure  13.  Inverse pole figure and recrystallization distribution mapping of AZ31B/1060Al joining interface

    图  14  AZ31B/1060Al结合界面局部取向差图及织构分布图

    Figure  14.  Local misorientation and texture distribution mappings of AZ31B/1060Al joining interface

    图  15  1060Al/2024Al结合界面反极图及再结晶分析结果

    Figure  15.  Inverse pole figure and recrystallization analysis results of 1060Al/2024Al joining interface

    图  16  1060Al/2024Al结合界面局部取向差图及织构分布图

    Figure  16.  Local misorientation and texture distribution mappings of 1060Al/2024Al joining interface

    图  17  X方向SHPB试样在不同速度冲击后的实物图

    Figure  17.  Physical images of SHPB samples in the X direction after impact at different velocities

    图  18  不同冲击速度下X方向试样的应力-应变曲线

    Figure  18.  Stress-strain curves of samples in the X direction under different impact velocities

    图  19  Z方向SHPB试样在不同速度冲击后的实物图

    Figure  19.  Physical images of SHPB samples in the Z direction after impact at different velocities

    图  20  不同冲击速度下Z方向试样的应力-应变曲线

    Figure  20.  Stress-strain curves of samples in the Z direction under different impact velocities

    图  21  试样1-9冲击后断口界面的三维形貌

    Figure  21.  Three-dimensional morphologies of fracture interfaces in sample 1-9 after impact

    图  22  试样1-10冲击后断口界面三维形貌

    Figure  22.  Three-dimensional morphologies of fracture interfaces in sample 1-10 after impact

    图  23  试样2-7冲击后断口界面三维形貌

    Figure  23.  Three-dimensional morphologies of fracture interfaces in sample 2-7 after impact

    图  24  X方向试样动态破坏机理

    Figure  24.  Dynamic failure mechanism of samples in the X direction

    图  25  Z方向试样的动态破坏机理

    Figure  25.  Dynamic failure mechanism of samples in the Z direction

    表  1  金属板材的物理尺寸及板间间隙

    Table  1.   Physical dimensions of metal plates and gaps between metal plates

    板材位置 材料 物理尺寸/mm 板间间隙/mm
    第1层(飞板) TA2 800×400×4 6
    3
    3
    5
    第2层(过渡层) 1060Al 800×400×1
    第3层(中间板) AZ31B 700×350×3
    第4层(过渡层) 1060Al 800×400×1
    第5层(基板) 2024Al 800×400×10
    下载: 导出CSV

    表  2  X方向试样在不同速度冲击后的变形量

    Table  2.   Deformation of the X-direction samples after impact at different velocities

    试样冲击速度/(m·s−1)初始高度/mm压缩后高度/mm
    1-110.195109.74
    1-213.421109.53
    1-315.767109.33
    1-418.268108.84
    1-520.145108.72
    1-622.045108.49
    1-727.247107.93
    1-830.506107.73
    1-933.02510分层断裂
    1-1036.25210分层断裂
    下载: 导出CSV

    表  3  Z方向试样在不同速度冲击后的变形量分析

    Table  3.   Analysis of the deformation of the Z-direction samples after impact at different velocities

    试样冲击速度/(m·s−1)初始高度/mm压缩后高度/mm
    2-110.588109.62
    2-213.466109.32
    2-315.807108.98
    2-418.135108.68
    2-520.000108.47
    2-621.92010断裂
    2-726.92510断裂
    下载: 导出CSV
  • [1] 王群, 王婧超, 李雄魁, 等. 航天用轻质结构材料研究进展及应用需求 [J]. 宇航材料工艺, 2017, 47(1): 1–4. DOI: 10.12044/j.issn.1007-2330.2017.01.001.

    WANG Q, WANG J C, LI X K, et al. Research progress and application requirements of lightweight structure materials for aerospace applications [J]. Aerospace Materials and Technology, 2017, 47(1): 1–4. DOI: 10.12044/j.issn.1007-2330.2017.01.001.
    [2] 郑超, 朱秀荣, 王军, 等. 装甲钛合金的研究与应用现状 [J]. 钛工业进展, 2020, 37(4): 41–48. DOI: 10.13567/j.cnki.issn1009-9964.2020.04.012.

    ZHENG C, ZHU X R, WANG J, et al. Review on investigation and application of titanium armors [J]. Titanium Industry Progress, 2020, 37(4): 41–48. DOI: 10.13567/j.cnki.issn1009-9964.2020.04.012.
    [3] 肖文龙, 付雨, 王俊帅, 等. 高强度高弹性钛合金的研究进展 [J]. 航空材料学报, 2020, 40(3): 11–24. DOI: 10.11868/j.issn.1005-5053.2020.000085.

    XIAO W L, FU Y, WANG J S, et al. Recent development in titanium alloys with high strength and high elasticity [J]. Journal of Aeronautical Materials, 2020, 40(3): 11–24. DOI: 10.11868/j.issn.1005-5053.2020.000085.
    [4] 赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39(7): 527–534. DOI: 10.7502/j.issn.1674-3962.202006025.

    ZHAO Y Q, GE P, XIN S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Materials China, 2020, 39(7): 527–534. DOI: 10.7502/j.issn.1674-3962.202006025.
    [5] 臧金鑫, 陈军洲, 韩凯, 等. 航空铝合金研究进展与发展趋势 [J]. 中国材料进展, 2022, 41(10): 769–777. DOI: 10.7502/j.issn.1674-3962.202207020.

    ZANG J X, CHEN J Z, HAN K, et al. Research progress and development tendency of aeronautical aluminum alloys [J]. Materials China, 2022, 41(10): 769–777. DOI: 10.7502/j.issn.1674-3962.202207020.
    [6] 熊柏青, 闫宏伟, 张永安, 等. 我国航空铝合金产业发展战略研究 [J]. 中国工程科学, 2023, 25(1): 88–95. DOI: 10.15302/J-SSCAE-2023.01.005.

    XIONG B Q, YAN H W, ZHANG Y A, et al. Development strategy for the aviation-grade aluminum alloy industry in China [J]. Strategic Study of CAE, 2023, 25(1): 88–95. DOI: 10.15302/J-SSCAE-2023.01.005.
    [7] 管仁国, 娄花芬, 黄晖, 等. 铝合金材料发展现状、趋势及展望 [J]. 中国工程科学, 2020, 22(5): 68–75. DOI: 10.15302/J-SSCAE-2020.05.013.

    GUAN R G, LOU H F, HUANG H, et al. Development of aluminum alloy materials: current status, trend, and prospects [J]. Strategic Study of CAE, 2020, 22(5): 68–75. DOI: 10.15302/J-SSCAE-2020.05.013.
    [8] 李杨, 胡红军, 钟韬, 等. 铝/镁双金属复合成形技术的研究现状及发展趋势 [J]. 材料热处理学报, 2022, 43(12): 1–9. DOI: 10.13289/j.issn.1009-6264.2022-0191.

    LI Y, HU H J, ZHONG T, et al. Research status and development trend of aluminum/magnesium bimetal composite forming technology [J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 1–9. DOI: 10.13289/j.issn.1009-6264.2022-0191.
    [9] 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22(3): 281–292. DOI: 10.16329/j.cnki.zrht.2016.03.002.

    WU G H, CHEN Y S, DING W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22(3): 281–292. DOI: 10.16329/j.cnki.zrht.2016.03.002.
    [10] 薛志勇, 母明浩, 韩修柱, 等. 新时代航空航天用镁合金的成型及强化研究进展 [J]. 热加工工艺, 2022, 51(3): 1–6, 12. DOI: 10.14158/j.cnki.1001-3814.20203129.

    XUE Z Y, MU M H, HAN X Z, et al. Research progress on forming and strengthening of magnesium alloys for aerospace in new era [J]. Hot Working Technology, 2022, 51(3): 1–6, 12. DOI: 10.14158/j.cnki.1001-3814 20203129. DOI: 10.14158/j.cnki.1001-3814.20203129.
    [11] LIANG H L, LUO N, CHEN Y L, et al. Interface microstructure and phase constitution of AA1060/TA2/SS30408 trimetallic composites fabricated by explosive welding [J]. Journal of Materials Research and Technology, 2022, 18: 564–576. DOI: 10.1016/j.jmrt.2022.02.109.
    [12] LIANG H L, LUO N, CHEN Y L, et al. Experimental and numerical simulation study of Fe-based amorphous foil/Al-1060 composites fabricated by an underwater explosive welding method [J]. Composite Interfaces, 2021, 28(10): 997–1013. DOI: 10.1080/09276440.2020.1843868.
    [13] LIANG H L, LUO N, LI X J, et al. Joining of Zr60Ti17Cu12Ni11 bulk metallic glass and aluminum 1060 by underwater explosive welding method [J]. Journal of Manufacturing Processes, 2019, 45: 115–122. DOI: 10.1016/j.jmapro.2019.06.035.
    [14] 李晓杰, 王宇新, 王小红, 等. 爆炸焊接基复板间隙中的气体冲击波 [J]. 爆炸与冲击, 2021, 41(7): 075301. DOI: 10.11883/bzycj-2020-0197.

    LI X J, WANG Y X, WANG X H, et al. Gas shock waves in the gap between the base and cladding plates during explosive welding [J]. Explosion and Shock Waves, 2021, 41(7): 075301. DOI: 10.11883/bzycj-2020-0197.
    [15] LIANG H L, LUO N, CHEN Y L, et al. Interface microstructure morphology and formation evolution mechanism of Al-1060/Cu-T2 composites fabricated by explosive welding method [J]. Composite Interfaces, 2022, 29(5): 465–485. DOI: 10.1080/09276440.2021.1971883.
    [16] LIANG H L, LUO N, SHEN T, et al. Experimental and numerical simulation study of Zr-based BMG/Al composites manufactured by underwater explosive welding [J]. Journal of Materials Research and Technology, 2020, 9(2): 1539–1548. DOI: 10.1016/j.jmrt.2019.11.079.
    [17] LUO N, LIANG H L, SUN X, et al. Research on the interfacial microstructure of three-layered stainless steel/Ti/low-carbon steel composite prepared by explosive welding [J]. Composite Interfaces, 2021, 28(6): 609–624. DOI: 10.1080/09276440.2020.1794751.
    [18] 李韵豪. 钛及钛合金塑性变形加工的感应加热(上) [J]. 金属加工(热加工), 2016(11): 31–36. DOI: 10.3969/j.issn.1674-165X.2016.11.018.
    [19] 李韵豪. 钛及钛合金塑性变形加工的感应加热(下) [J]. 金属加工(热加工), 2016(13): 61–65. DOI: 10.3969/j.issn.1674-165X.2016.13.024.
    [20] 李韵豪. 铝及铝合金塑性变形加工的感应加热(上) [J]. 金属加工(热加工), 2016(3): 54–58. DOI: 10.3969/j.issn.1674-165X.2016.03.027.
    [21] 李韵豪. 铝及铝合金塑性变形加工的感应加热(下) [J]. 金属加工(热加工), 2016(5): 25–30. DOI: 10.3969/j.issn.1674-165X.2016.05.013.
    [22] 韩顺昌. 爆炸焊接界面相变与断口组织 [M]. 北京: 国防工业出版社, 2011: 87–88.
    [23] FU Y S, LUO K X, ZHAO P L, et al. Dynamic behavior of Cu/Al-laminated metal with impedance mismatch [J]. Journal of Materials Engineering and Performance, 2022, 31(11): 9173–9182. DOI: 10.1007/s11665-022-06930-1.
    [24] ZHOU Q, LIU R, ZHOU Q, et al. Tensile behavior of the titanium-steel explosive welded interface under quasi-static and high-strain rate loading [J]. International Journal of Solids and Structures, 2022, 254/255: 111870. DOI: 10.1016/j.ijsolstr.2022.111870.
    [25] LI Y X, WANG L, ZHU L, et al. Investigation of interfacial structure and dynamic mechanical behavior of titanium alloy laminated composites [J]. Journal of Materials Research and Technology, 2022, 21: 5111–5120. DOI: 10.1016/j.jmrt.2022.11.101.
    [26] 郑远谋. 爆炸焊接和爆炸复合材料的原理及应用 [M]. 长沙: 中南大学出版社, 2007: 511–512.
    [27] LIANG H L, LUO N, CHEN Y L, et al. Experimental and numerical investigations on interface microstructure characteristics and wave formation mechanism of Sn/Cu explosive welded plates [J]. Composite Interfaces, 2023, 30(5): 467–491. DOI: 10.1080/09276440.2023.2179256.
    [28] LIANG H L, CHEN Y L, LUO N, et al. Phase constitution and texture distribution in the vortex zone of Co/Cu explosive welded plates [J]. Journal of Materials Research and Technology, 2022, 18: 4228–4235. DOI: 10.1016/j.jmrt.2022.04.108.
    [29] 王耀华. 金属板材爆炸焊接研究与实践 [M]. 北京: 国防工业出版社, 2011: 105–106.
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  30
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2024-01-04
  • 网络出版日期:  2024-01-05
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回