负载对穿甲杆侵彻钢靶行为影响的试验和数值模拟研究

付吉 纪杨子燚 郭腾飞 刘吉安 李向东

付吉, 纪杨子燚, 郭腾飞, 刘吉安, 李向东. 负载对穿甲杆侵彻钢靶行为影响的试验和数值模拟研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0379
引用本文: 付吉, 纪杨子燚, 郭腾飞, 刘吉安, 李向东. 负载对穿甲杆侵彻钢靶行为影响的试验和数值模拟研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0379
FU Ji, JI Yangziyi, GUO Tengfei, LIU Ji’an, LI Xiangdong. Experimental and numerical investigation of the effects of load on the penetration behavior of armor-piercing rods into steel targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0379
Citation: FU Ji, JI Yangziyi, GUO Tengfei, LIU Ji’an, LI Xiangdong. Experimental and numerical investigation of the effects of load on the penetration behavior of armor-piercing rods into steel targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0379

负载对穿甲杆侵彻钢靶行为影响的试验和数值模拟研究

doi: 10.11883/bzycj-2023-0379
详细信息
    作者简介:

    付 吉(2000- ),男,硕士研究生,fuji@njust.edu.cn

    通讯作者:

    李向东(1969- ),男,博士,教授,lixiangd@njust.edu.cn

  • 中图分类号: O389

Experimental and numerical investigation of the effects of load on the penetration behavior of armor-piercing rods into steel targets

  • 摘要: 为探究负载对穿甲杆侵彻钢靶行为的影响,采用试验和数值计算相结合的方法,研究了带负载和不带负载穿甲杆对603装甲钢的侵彻行为,分析了负载、入射角度、撞击速度以及负载质心位置对穿甲杆侵彻深度、偏转角度的影响。研究结果表明:斜侵彻时负载使穿甲杆的侵彻深度提高并减小穿甲杆侵彻过程中的弹道偏转角度,提高了穿甲杆的侵彻能力;正侵彻时负载撞击靶板表面消耗能量,不利于提高穿甲杆侵彻深度;撞击速度为1400 m/s,入射角为60°时,负载降低了穿甲杆临界跳飞速度;负载质心距穿甲杆头部距离大于穿甲杆长度1/2时,弹道偏转角度减小,负载使穿甲杆的侵彻能力增强。
  • 图  1  试验布置

    Figure  1.  Test layout

    图  2  试验弹

    Figure  2.  Test projectile

    图  3  穿甲杆飞行姿态

    Figure  3.  Typical armor-piercing rod flight attitude

    图  4  穿甲杆侵彻靶板表面开孔形态(左侧为不带负载,右侧为带负载)

    Figure  4.  Hole shape on the surface of typical target plates (without load on the left , with load on the right)

    图  5  穿甲杆侵彻靶板的有限元模型

    Figure  5.  Finite element modeling of an armor-piercing rod penetrating a target plate

    图  6  典型工况数值模拟与试验结果剖面的对比

    Figure  6.  Cross-sectional comparison of numerical simulation and test results under typical working conditions

    图  7  侵彻弹道偏转角示意

    Figure  7.  Schematic of penetration ballistic deflection angle

    图  8  穿甲杆侵彻过程应力分布云图(撞击速度为1600 m/s)

    Figure  8.  Stress distribution of the armor-piercing rod penetrates target with an impact velocity of 1600 m/s

    图  9  侵彻方向穿甲杆尾部速度

    Figure  9.  Tail speed of armor-piercing rod

    图  10  侵彻弹道偏转角

    Figure  10.  Penetration ballistic deflection angle

    图  11  相对侵彻深度和穿甲杆撞击速度的关系

    Figure  11.  Relationship between relative depth of penetration and impact velocity of the armor-piercing rod

    图  12  带负载与不带负载穿甲杆的临界跳飞速度(θ = 60°)

    Figure  12.  Critical jump speed of the armor-piercing rod with and without load (θ = 60°)

    图  13  不带负载与带负载穿甲杆初始侵彻姿态(θ = 0°,左侧:俯视图,右侧:侧视图)

    Figure  13.  Initial penetration attitude of armor-piercing rod without and with load (θ=0°, left: top view; right: side view)

    图  14  偏转角度和穿甲杆撞击速度的关系

    Figure  14.  Relationship between deflection angle and impact velocity of armor-piercing rod

    图  15  负载质心位置

    Figure  15.  Load centroid position

    图  16  无量纲长度对无量纲侵彻深度和偏转角度的影响

    Figure  16.  Influence of dimensionless length on penetration depth and deflection angle

    表  1  试验弹参数

    Table  1.   Test projectile parameters

    穿甲杆直径/mm试验弹长度/mm穿甲杆质量/g模拟负载质量/g闭气环质量/g尾翼质量/g全弹质量/g
    5.6123.72554434.9106.9
    下载: 导出CSV

    表  2  试验结果

    Table  2.   Test results

    发序负载撞击速度/(m∙s-1)攻角/(°)入射角/(°)入口面积/(mm×mm)侵彻深度/mm
    11192009×953
    2126104511×1262
    3137804510×1549
    4141704515×1268
    5144704515×1667
    6146706051×2578
    7161906046×2883
    8139406021×2471
    91381060跳弹跳弹
    下载: 导出CSV

    表  3  材料参数

    Table  3.   Material parameters

    材料 ρ/(kg·m−3) E/GPa G/GPa ν A/MPa B/MPa N
    93钨 17400 90 0.28 1506 177 0.12
    603装甲钢 7800 206 0.33 1100 310 0.26
    铝合金 2797 69 0.33 265 462 0.34
    材料 M C d1 d2 d3 d4 d5
    93钨 1.0 0.016 2.0 0 0 0 0
    603装甲钢 1.03 0.014 2.0 0 0 0 0
    铝合金 1.0 0.014 0.13 0.13 −1.5 0.011 0
    下载: 导出CSV

    表  4  典型工况数值模拟与试验数据的对比

    Table  4.   Comparison of numerical simulation and test data under typical working conditions

    发序 负载 入射角/(°) 入口面积/(mm×mm) 侵彻深度/mm
    试验 数值模拟 入口面积相对误差/% 试验 数值模拟 侵彻深度相对误差/%
    1 0 9×9 10.0×9.1 12.3 53 50.0 −5.7
    4 45 15×12 16.8×12.0 12.0 68 68.9 1.3
    5 45 15×16 16.0×13.5 −10.0 67 70.0 4.5
    7 60 46×28 48.0×24.0 −10.6 83 83.9 1.0
    9 60 36.6×12.0 37.1
    下载: 导出CSV
  • [1] 周健, 王竹萍, 焦勇, 等. 国外陆军高速动能导弹技术现状及发展趋势 [J]. 兵工学报, 2010, 31(S2): 153–156.

    ZHOU J, WANG Z P, JIAO Y, et al. Present situation and development tendency of foreign hypervelocity kinetic energy missiles [J]. Acta Armamentarii, 2010, 31(S2): 153–156.
    [2] NAUMANN K. Solid rocket propulsion for the German hypervelocity missile program—an overview [C]// Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama: American Institute of Aeronautics and Astronautics, 2003. DOI: 10.2514/6.2003-4969.
    [3] STEWART R, THEDE R, COUCH P, et al. High G MEMS accelerometer for Compact Kinetic Energy Missile (CKEM) [C]//Proceedings of the Position Location and Navigation Symposium. Monterey: IEEE, 2004: 20–25. DOI: 10.1109/PLANS.2004.1308969.
    [4] 高原, 谷良贤. 超高速动能反坦克导弹技术 [J]. 火力与指挥控制, 2008, 33(10): 1–4. DOI: 10.3969/j.issn.1002-0640.2008.10.001.

    GAO Y, GU L X. Study on technology of hypervelocity kinetic energy anti-tank missile [J]. Fire Control and Command Control, 2008, 33(10): 1–4. DOI: 10.3969/j.issn.1002-0640.2008.10.001.
    [5] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [6] 焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
    [7] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992.
    [8] CHEN X W, YANG Y B, LU Z H, et al. Perforation of metallic plates struck by a blunt projectile with a soft nose [J]. International Journal of Impact Engineering, 2008, 35(6): 549–558. DOI: 10.1016/j.ijimpeng.2007.05.002.
    [9] CHEN X W, YANG Y H, YANG Y B, et al. Modeling on a blunt projectile with a nose-cabin-column perforating into metallic plates [C]// Proceedings of the 23rd International Symposium on Ballistics Tarragona. Tarragona, Spain, 2007: 1227–1234.
    [10] 陈小伟, 杨云斌, 路中华. 带前舱物的钝头弹对金属靶的正穿甲分析 [J]. 爆炸与冲击, 2006, 26(4): 294–302. DOI: 10.11883/1001-1455(2006)04-0294-09.

    CHEN X W, YANG Y B, LU Z H. Perforation of metallic plates struck by a blunt projectile with a nose-cabin-column [J]. Explosion and Shock Waves, 2006, 26(4): 294–302. DOI: 10.11883/1001-1455(2006)04-0294-09.
    [11] 吕中杰, 徐钰巍, 黄风雷, 等. 带弱连接结构弹体斜侵彻混凝土试验研究 [C]//第四届全国计算爆炸力学会议论文集. 北京, 2008: 488–493.
    [12] 徐钰巍, 黄风雷, 吕中杰. 带前舱结构弹体斜侵彻混凝土靶实验研究 [C]//第十届全国冲击动力学学术会议论文摘要集. 太原: 中国力学学会, 2011: 1–4.
    [13] 徐钰巍, 黄风雷, 皮爱国, 等. 带前舱弹体斜撞击硬目标的姿态偏转 [J]. 北京理工大学学报, 2016, 36(10): 1011–1014. DOI: 10.15918/j.tbit1001-0645.2016.10.005.

    XU Y W, HUANG F L, PI A G, et al. Attitude deflection of projectile with nose cabin under oblique impact on the hard target [J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 1011–1014. DOI: 10.15918/j.tbit1001-0645.2016.10.005.
    [14] 陈刚, 张青平, 陈忠富. 前舱物对半穿甲弹体斜穿甲过程影响的数值模拟研究 [C]//第八届全国冲击动力学学术讨论会会议论文集. 银川: 中国力学学会, 2007: 302–307.
    [15] 赵宏伟, 贺元吉, 成丽蓉, 等. 带前舱战斗部对钢筋混凝土侵彻规律研究 [J]. 北京理工大学学报, 2019, 39(6): 578–582. DOI: 10.15918/j.tbit1001-0645.2019.06.005.

    ZHAO H W, HE Y J, CHENG L R, et al. Study on the law of penetration of reinforced concrete by warhead with forecabin [J]. Transactions of Beijing Institute of Technology, 2019, 39(6): 578–582. DOI: 10.15918/j.tbit1001-0645.2019.06.005.
    [16] 刘雨佳, 侯海量, 李茂, 等. 前舱物对低速大质量平头弹侵彻金属薄板的影响 [J]. 高压物理学报, 2020, 34(1): 015104. DOI: 10.11858/gywlxb.20190830.

    LIU Y J, HOU H L, LI M, et al. Influence of nose cabin on low speed blunt projectile during penetration of metal plate [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015104. DOI: 10.11858/gywlxb.20190830.
    [17] 邹勇, 胡国怀, 周喻虹, 等. 高速动能导弹穿甲毁伤模拟试验研究 [J]. 弹箭与制导学报, 2019, 39(1): 35–37. DOI: 10.15892/j.cnki.djzdxb.2019.01.008.

    ZOU Y, HU G H, ZHOU Y H, et al. Experimental simulated investigation on armour-piercing damage of high-speed kinetic energy missile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(1): 35–37. DOI: 10.15892/j.cnki.djzdxb.2019.01.008.
    [18] 伍一顺, 陈小伟. 长杆弹撞击陶瓷靶的一种数值模拟方法 [J]. 爆炸与冲击, 2020, 40(5): 053301. DOI: 10.11883/bzycj-2019-0291.

    WU Y S, CHEN X W. A numerical simulation method for long rods penetrating into ceramic targets [J]. Explosion and Shock Waves, 2020, 40(5): 053301. DOI: 10.11883/bzycj-2019-0291.
    [19] 王猛, 杨明川, 罗荣梅, 等. 钨合金杆式弹穿甲侵彻开坑阶段绝热剪切失效的数值模拟 [J]. 振动与冲击, 2016, 35(18): 111–116. DOI: 10.13465/j.cnki.jvs.2016.14.018.

    WANG M, YANG M C, LUO R M, et al. Numerical simulation on the adiabatic shear failure at cratering stage for tungsten alloy long rod penetrator piercing into armor [J]. Journal of Vibration and Shock, 2016, 35(18): 111–116. DOI: 10.13465/j.cnki.jvs.2016.14.018.
    [20] 蓝肖颖, 李向东, 周兰伟, 等. 双破片侵彻耦合载荷对容器壁面的毁伤研究 [J]. 兵工学报, 2019, 40(1): 159–170. DOI: 10.3969/j.issn.1000-1093.2019.01.019.

    LAN X Y, LI X D, ZHOU L W, et al. Research on damage of vessel walls caused by double fragments penetration and coupling load [J]. Acta Armamentarii, 2019, 40(1): 159–170. DOI: 10.3969/j.issn.1000-1093.2019.01.019.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  27
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-16
  • 修回日期:  2024-02-19
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回