交错起爆下爆炸应力波的碰撞机制与破岩效果

范勇 郭一鸣 冷振东 杨广栋 田斌

范勇, 郭一鸣, 冷振东, 杨广栋, 田斌. 交错起爆下爆炸应力波的碰撞机制与破岩效果[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0391
引用本文: 范勇, 郭一鸣, 冷振东, 杨广栋, 田斌. 交错起爆下爆炸应力波的碰撞机制与破岩效果[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0391
FAN Yong, GUO Yiming, LENG Zhendong, YANG Guangdong, TIAN Bin. Collision mechanism and rock breaking effect of the stress wave induced by staggered initiation blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0391
Citation: FAN Yong, GUO Yiming, LENG Zhendong, YANG Guangdong, TIAN Bin. Collision mechanism and rock breaking effect of the stress wave induced by staggered initiation blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0391

交错起爆下爆炸应力波的碰撞机制与破岩效果

doi: 10.11883/bzycj-2023-0391
基金项目: 国家自然科学基金项目( 52379128,51979152);湖北省自然科学基金杰青项目( 2023AFA048 )
详细信息
    作者简介:

    范 勇(1988- ),男,博士,教授,yfan@ctgu.edu.cn

    通讯作者:

    冷振东(1989- ),男,博士,研究员、正高级工程师,zdleng@whu.edu.cn

  • 中图分类号: Q

Collision mechanism and rock breaking effect of the stress wave induced by staggered initiation blasting

  • 摘要: 对双孔交错起爆方式下孔间爆炸应力波的碰撞机制和破岩效果开展了研究,基于应力波正、斜碰撞理论研究了孔间爆炸应力波的相互作用机制,证明了双孔交错起爆方式下孔间应力波碰撞引起的应力增强效应;借助ANSYS/LS-DYNA有限元程序中岩石的RHT模型和炸药的JWL状态方程,模拟了交错、孔底和孔口起爆方式下孔间应力波的大小和破岩效果;最后,结合现场试验对比分析了不同起爆方式下爆炸应力波的相互作用及含砾石岩体的破碎块度分布特征。研究结果表明:双孔交错起爆下两应力波首先在孔间正碰撞,碰撞后与应力波稳定传播时的压力比为2.4倍;当入射角在0°~44°时,应力波斜碰撞,压力比由4.1降至2.3;当入射角在44°~90°时,应力波发生马赫反射,压力比由3.5降至1。交错、孔底起爆方式下,爆破块度尺寸小于250 mm的比例分别为25.5%和20.9%,爆破块度尺寸大于750 mm的比例分别为9.2%和17.5%。双孔交错起爆引起的应力波碰撞增强效应可有效改善含砾石岩体的钻孔爆破破碎效果。
  • 图  1  双孔交错起爆下孔间爆炸应力波的碰撞示意图

    Figure  1.  Schematic diagram of collision of explosive stress waves between the holes under staggered initiation of double holes

    图  2  应力波正反射示意图

    Figure  2.  Schematic diagram of the positive reflection of a stress wave

    图  3  应力波斜碰撞示意图

    Figure  3.  Schematic diagram of oblique collision of stress waves

    图  4  应力波入射角度与偏转角和反射角的关系

    Figure  4.  Relationship between the angle of incidence of a stress wave and the angles of deflection and reflection

    图  5  压力比与入射角的关系

    Figure  5.  Relationship between burst pressure ratio and angle of incidence

    图  6  含椭球砾石的岩体模型(单位:m)

    Figure  6.  Model of ellipsoid-bearing conglomerate body (unit: m)

    图  7  不同起爆方式下孔间爆破损伤分布特征

    Figure  7.  Characteristics of inter-hole blasting damage distribution under different initiation methods

    图  8  不同起爆方式下孔间椭球砾石的爆破损伤分布特征

    Figure  8.  Characteristics of blasting damage distribution of inter-hole ellipsoidal gravel under different initiation methods

    图  9  不同起爆方式下孔间椭球砾石的爆压时程曲线

    Figure  9.  Time dependent burst pressure curves of inter-hole ellipsoidal gravel under different initiation methods

    图  10  不同起爆方式下孔间椭球砾石的爆破破碎块度分布

    Figure  10.  Inter-hole ellipsoidal gravel blasting fracture block size distribution under different initiation methods

    图  11  含砾石太和铁矿

    Figure  11.  Gravel-bearing Taihe iron ore

    图  12  现场试验及仪器布置图 (单位:m)

    Figure  12.  Field test and instrumentation layout (unit: m)

    图  13  爆破后砾石形态图 (单位:m)

    Figure  13.  Map of gravel morphology after blasting (unit: m)

    图  14  不同起爆方式下的爆压时程曲线

    Figure  14.  Burst pressure time course curves for different initiation methods

    图  15  不同起爆方式爆破后爆堆形态

    Figure  15.  Morphology of the blast pile after blasting with different initiation methods

    图  16  不同起爆方式爆破块度分布

    Figure  16.  Blast block size distribution by different initiation method

    表  1  岩石和砾石的RHT主要参数

    Table  1.   Main RHT parameters of rock and gravel

    材料 fc/MPa ρp/(kg·m−3 α0 αP ft* fs* Gel/GPa Pcr/MPa Pco/GPa ε0C/S−1 ε0T/S−1 εC/S−1
    岩石 64 2500 1.2 3 0.06 0.25 12 60 9 3×10−5 3×10−6 3×1025
    砾石 116 2800 1.05 0.04
    材料 εT/S−1 εero A1/GPa A2/GPa A3/GPa B0 B1 T1/GPa T2/GPa A N Q0
    岩石 3×1025 2 40 57.6 23.6 1.22 1.22 40 0 1.6 0.61 0.68
    砾石
    材料 B α β GC* GT* x D1 D2 εmin Af Nf
    岩石 0.0105 0.026 0.031 0.53 0.7 0.5 0.02 1 0.01 1.6 0.61
    砾石 0.008
    下载: 导出CSV

    表  2  炸药模型参数

    Table  2.   Explosive model parameters

    ρJ/(kg·m−3 vJ/(m·s−1 PCJ/Gpa AJ/Gpa BJ/Gpa R1 R2 ω e/(kJ·m−2
    0.931 4160 5.15 49.46 1.891 3.907 1.118 0.333 3.87
    下载: 导出CSV
  • [1] 范勇, 吴进高, 冷振东, 等. 爆破漏斗岩石破碎块度实验与仿真 [J]. 岩石力学与工程学报, 2023, 42(9): 2125–2139. DOI: 10.13722/j.cnki.jrme.2022.0869.

    FAN Y, WU J G, LENG Z D, et al. Experiment and simulation of rock fragmentation size of blasting crater [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(9): 2125–2139. DOI: 10.13722/j.cnki.jrme.2022.0869.
    [2] 冷振东, 范勇, 涂书芳, 等. 电子雷管起爆技术研究进展与发展建议 [J]. 中国工程科学, 2023, 25(1): 142–154. DOI: 10.15302/J-SSCAE-2023.07.001.

    LENG Z D, FAN Y, TU S F, et al. Electronic detonator initiation technology: research progress and development strategies [J]. Strategic Study of CAE, 2023, 25(1): 142–154. DOI: 10.15302/J-SSCAE-2023.07.001.
    [3] 李瑞泽, 卢文波, 尹岳降, 等. 白鹤滩旱谷地灰岩爆破碎石颗粒形状及比表面积特征研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1344–1354. DOI: 10.13722/j.cnki.jrme.2018.1367.

    LI R Z, LU W B, YIN Y J, et al. Study on the shape and specific surface area characteristics of blasting gravel particles of limestone in Hangudi quarry of Baihetan [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1344–1354. DOI: 10.13722/j.cnki.jrme.2018.1367.
    [4] 高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律 [J]. 岩石力学与工程学报, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.

    GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.
    [5] CHIAPPETTA R F. Precision detonators and their applications in improving fragmentation, reducing ground vibrations and increasing reliability-a look into the future [C]//Proceeding of the 4th High Tech Seminar on State-of-the-Art, Blasting Technology, Instrumentation and Explosive Applications. Nashville, 1992: 1–26.
    [6] 高启栋, 靳军, 王亚琼, 等. 孔内起爆位置对爆破振动场分布的影响作用规律 [J]. 爆炸与冲击, 2021, 41(10): 105201. DOI: 138-152. 10.11883/bzycj-2020-0352. DOI: 10.11883/bzycj-2020-0352.

    GAO Q D, JIN J, WANG Y Q, et al. Acting law of in-hole initiation position on distribution of blast vibration field [J]. Explosion and Shock Waves, 2021, 41(10): 105201. DOI: 138-152. 10.11883/bzycj-2020-0352. DOI: 10.11883/bzycj-2020-0352.
    [7] 范勇, 孙金山, 贾永胜, 等. 高地应力硐室光面爆破孔间应力相互作用与成缝机制 [J]. 岩石力学与工程学报, 2023, 42(6): 1352–1365. DOI: 10.13722/j.cnki.jrme.2022.1127.

    FAN Y, SUN J S, JIA Y S, et al. Stress interaction and crack penetration mechanism between smooth blasting holes for tunnel excavation under high in-situ stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1352–1365. DOI: 10.13722/j.cnki.jrme.2022.1127.
    [8] SINGH S P. Mechanism of tracer blasting [J]. Geotechnical and Geological Engineering, 1996, 14(1): 41–50. DOI: 10.1007/BF00431233.
    [9] ZHANG Z X. Effect of double-primer placement on rock fracture and ore recovery [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 208–216. DOI: 10.1016/j.ijrmms.2014.03.020.
    [10] CHOUHAN L S, RAINA A K, MURTHY V M S R, et al. Advanced analysis of collision-induced blast fragmentation in V-type firing pattern [J]. Sustainability, 2022, 14(23): 15703. DOI: 10.3390/su142315703.
    [11] MIAO Y S, Li X J, YAN H H, et al. Research and application of a symmetric bilinear initiation system in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 52–56. DOI: 10.1016/j.ijrmms.2018.01.017.
    [12] ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 73–84. DOI: 10.1016/j.ijrmms.2012.10.004.
    [13] LIU L, CHEN M, LU W B, et al. Effect of the location of the detonation initiation point for bench blasting [J]. Shock and Vibration, 2015, 2015: 907310. DOI: 10.1155/2015/907310.
    [14] 胡少斌, 王恩元, 陈鹏, 等. 起爆位置对煤岩体深孔爆破的影响 [J]. 煤矿安全, 2012, 43(2): 167–171. DOI: 10.13347/j.cnki.mkaq.2012.02.008.

    HU S B, WANG E Y, CHEN P, et al. The influence research of initiating position on deep-hole blasting among coal-rock masses [J]. Safety in Coal Mines, 2012, 43(2): 167–171. DOI: 10.13347/j.cnki.mkaq.2012.02.008.
    [15] 张世豪, 韩晶, 王华, 等. 混凝土中多点同步爆炸能量聚集效应分析 [J]. 爆破, 2014, 31(1): 19–24,81. DOI: 10.3963/j.issn.1001-487X.2014.01.005.

    ZHANG S H, HAN J, WANG H, et al. Energy gathering effect of multi-point simultaneous explosion in concrete [J]. Blasting, 2014, 31(1): 19–24,81. DOI: 10.3963/j.issn.1001-487X.2014.01.005.
    [16] 李洪伟, 雷战, 刘伟, 等. 起爆方式对岩石柱状装药爆破作用的影响 [J]. 工程爆破, 2019, 25(5): 28–34. DOI: 10.3969/j.issn.1006-7051.2019.05.005.

    LI H W, LEI Z, LIU W, et al. Influence of detonation mode on blasting effect of rock columnar charge [J]. Engineering Blasting, 2019, 25(5): 28–34. DOI: 10.3969/j.issn.1006-7051.2019.05.005.
    [17] 高启栋, 靳军, 王亚琼, 等. 隧道掏槽爆破中起爆点位置对爆炸能量传输的影响作用及其比选研究 [J]. 中国公路学报, 2022, 35(5): 140–152. DOI: 10.19721/j.cnki.1001-7372.2022.05.013.

    GAO Q D, JIN J, WANGY Q, et al. Study on influence law of initiation position on transmission of explosion energy and its comparison and selection in tunnel cutting blasting [J]. China Journal of Highway and Transport, 2022, 35(5): 140–152. DOI: 10.19721/j.cnki.1001-7372.2022.05.013.
    [18] 杨仁树, 赵勇, 方士正, 等. 起爆方式对间隔装药应力场分布及裂纹扩展的影响 [J]. 工程科学学报, 2023, 45(5): 714–727. DOI: 10.13374/j.issn2095-9389.2022.03.03.006.

    YANG R S, ZHAO Y, FANG S Z, et al. Effect of the detonation method on the stress field distribution and crack propagation of spacer charge blasting [J]. Chinese Journal of Engineering, 2023, 45(5): 714–727. DOI: 10.13374/j.issn2095-9389.2022.03.03.006.
    [19] 张守中. 爆炸与冲击动力学 [M]. 北京: 兵器工业出版社, 1993.
    [20] DUNNE B B. Mach reflection of detonation waves in condensed high explosives [J]. The Physics of Fluids, 1961, 4(7): 918–924. DOI: 10.1063/1.1706425.
    [21] 朱传胜, 黄正祥, 刘荣忠, 等. 马赫波反射中过度压缩系数的计算 [J]. 火炸药学报, 2014, 37(3): 39–42. DOI: 10.14077/j.issn.1007-7812.2014.03.007.

    ZHU C S, HUANG Z X, LIU R Z, et al. Calculation of excessive compression factor in Mach reflection [J]. Chinese Journal of Explosives & Propellants, 2014, 37(3): 39–42. DOI: 10.14077/j.issn.1007-7812.2014.03.007.
    [22] 赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282. DOI: 10.3969/j.issn.1000-5773.2009.04.007.

    ZHAO Z, TAO G, DU C X. Application research on JWL equation of state of detonation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282. DOI: 10.3969/j.issn.1000-5773.2009.04.007.
    [23] RIEDEL W, THOMA K, HIERMAIER S. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effect of Munitions with Structures. Strausberg, 1999: 315–322.
    [24] 黄永辉, 刘殿书, 李胜林, 等. 高台阶抛掷爆破速度规律的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 495–500. DOI: 10.11883/1001-1455(2014)04-0495-06.

    HUANG Y H, LIU D S, LI S L, et al. Numerical simulation on pin-point blasting of sloping surface [J]. Explosion and Shock Waves, 2014, 34(4): 495–500. DOI: 10.11883/1001-1455(2014)04-0495-06.
    [25] JAYASINGHE L B, ZHOU H Y, GOH A T C, et al. Pile response subjected to rock blasting induced ground vibration near soil-rock interface [J]. Computers and Geotechnics, 2017, 82: 1–15. DOI: 10.1016/j.compgeo.2016.09.015.
    [26] 王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.

    WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.
    [27] 陈寿峰, 薛士文, 高伟伟, 等. 岩石聚能爆破试验与数值模拟研究 [J]. 爆破, 2012, 29(4): 14–18,75. DOI: 10.3963/j.issn.1001-487X.2012.04.004.

    CHEN S F, XUE S W, GAO W W, et al. Experimental study and numerical simulation of rock shaped charge blasting [J]. Blasting, 2012, 29(4): 14–18,75. DOI: 10.3963/j.issn.1001-487X.2012.04.004.
    [28] SHEHU S A, YUSUF K O, HASHIM M H M. Comparative study of WipFrag image analysis and Kuz-Ram empirical model in granite aggregate quarry and their application for blast fragmentation rating [J]. Geomechanics and Geoengineering, 2022, 17(1): 197–205. DOI: 10.1080/17486025.2020.1720830.
    [29] RAINA A K, MURTHY V M S R, SONI A K. Estimating flyrock distance in bench blasting through blast induced pressure measurements in rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 209–216. DOI: 10.1016/j.ijrmms.2015.03.002.
    [30] RAINA A K, TRIVEDI R. Exploring rock-explosive interaction through cross blasthole pressure measurements [J]. Geotechnical and Geological Engineering, 2019, 37(2): 651–658. DOI: 10.1007/s10706-018-0635-3.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  16
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2024-01-18
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回