爆轰管内氢氧爆炸过程与碳-铁纳米材料生长研究

赵铁军 刘翼 吴永翔 闫鸿浩 吴林松

赵铁军, 刘翼, 吴永翔, 闫鸿浩, 吴林松. 爆轰管内氢氧爆炸过程与碳-铁纳米材料生长研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0404
引用本文: 赵铁军, 刘翼, 吴永翔, 闫鸿浩, 吴林松. 爆轰管内氢氧爆炸过程与碳-铁纳米材料生长研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0404
ZHAO Tiejun, LIU Yi, WU Yongxiang, YAN Honghao, WU Linsong. Study on hydrogen-oxygen detonation process and the growth of carbon-iron nanomaterials in the detonation tube[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0404
Citation: ZHAO Tiejun, LIU Yi, WU Yongxiang, YAN Honghao, WU Linsong. Study on hydrogen-oxygen detonation process and the growth of carbon-iron nanomaterials in the detonation tube[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0404

爆轰管内氢氧爆炸过程与碳-铁纳米材料生长研究

doi: 10.11883/bzycj-2023-0404
基金项目: 国家自然科学基金(11672068, 12172084);河南省自然科学基金(232300420341);河南省科技攻关项目(242102230015)
详细信息
    作者简介:

    赵铁军(1990- ),男,博士,讲师,tiejun_zhao@henu.edu.cn

    通讯作者:

    闫鸿浩(1974- ),男,博士,教授,yanhh@dlut.edu.cn

  • 中图分类号: O389

Study on hydrogen-oxygen detonation process and the growth of carbon-iron nanomaterials in the detonation tube

  • 摘要: 为研究气相爆轰合成碳-铁纳米材料的爆炸过程,采用氢氧爆炸试验与数值模拟相结合的方式研究了不同氢氧摩尔比(2∶1、3∶1和4∶1)对爆轰参数(爆速、爆温、爆压)峰值时程曲线与碳-铁纳米材料形貌的影响。研究表明:爆轰管内氢氧爆炸包括爆轰波的传播与燃烧波的衰减两个过程,且氢氧摩尔比对爆速、爆温、爆压的峰值时程曲线影响十分显著。随着氢氧摩尔比的提高,爆轰波的爆速、爆温、爆压及其衰减速率均呈减小趋势。氢氧摩尔比通过影响爆轰波的传播与衰减而作用于碳-铁纳米材料形貌的生长。零氧平衡时,样品为碳包铁纳米颗粒,随着氢氧摩尔比的提高,样品中碳纳米管的数量逐渐增多。调整氢氧摩尔比可实现对爆轰波传播与衰减过程的控制,达到气相爆轰控制性制备特定形貌的碳-铁纳米材料目的。
  • 图  1  气体爆炸合成碳-铁纳米材料所用爆轰管示意图

    Figure  1.  Schematic diagram of the detonation tube used in the synthesis of carbon-iron nanomaterials by gas explosion

    图  2  密闭管道的几何模型

    Figure  2.  Geometry of a closed tube

    图  3  几何模型的网格划分

    Figure  3.  Meshing of geometry

    图  4  氢氧摩尔比为2∶1条件下网格尺寸对速度时程曲线的影响

    Figure  4.  Effect of mesh size on the time-history curves of velocity when molar ratios of hydrogen-oxygen is 2∶1

    图  5  工况1下爆轰波的传播衰减高速摄影图像与爆速时程曲线

    Figure  5.  The propagation attenuation of the detonation wave, the high-speed photographic image and the time history curve of the detonation velocity under the working condition S1,

    图  6  不同时刻峰值的速度云图

    Figure  6.  Velocity contour of peak values at different times

    图  7  不同工况下观测点速度、温度和压强的峰值时程曲线

    Figure  7.  Velocity, temperature and pressure history curves at observation points under different working conditions

    图  8  不同工况下样品的 TEM 图像

    Figure  8.  TEM image of the sample under different working conditions

    图  9  不同工况下爆轰波传播到管道中心位置的时间

    Figure  9.  The time required for the detonation wave to propagate to the center of the tube under different working conditions

    表  1  不同网格尺寸的网格数量及其爆速和误差

    Table  1.   The number of meshes of different mesh sizes and their detonation velocity and error

    最大网格尺寸/mm网格数量爆速/(m∙s−1误差/%
    1.0104 492197210.36
    2.027 596187614.73
    2.517 676182017.27
     注:爆速为爆轰波第1次经过观测点时的速度。
    下载: 导出CSV
  • [1] WANG X S, VASILEFF A, JIAO Y, et al. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting [J]. Advanced Materials, 2019, 31(13): 1803625. DOI: 10.1002/adma.201803625.
    [2] YANG Z F, TIAN J R, YIN Z F, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review [J]. Carbon, 2019, 141: 467–480. DOI: 10.1016/j.carbon.2018.10.010.
    [3] LU F, ASTRUC D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants [J]. Coordination Chemistry Reviews, 2020, 408: 213180. DOI: 10.1016/j.ccr.2020.213180.
    [4] CHARINPANITKUL T, TANTHAPANICHAKOON W, SANO N. Carbon nanostructures synthesized by arc discharge between carbon and iron electrodes in liquid nitrogen [J]. Current Applied Physics, 2009, 9(3): 629–632. DOI: 10.1016/j.cap.2008.05.018.
    [5] WANG X, XU B, LIU X, et al. Synthesis of Fe-included onion-like Fullerenes by chemical vapor deposition [J]. Diamond and Related Materials, 2006, 15(1): 147–150. DOI: 10.1016/j.diamond.2005.09.005.
    [6] 徐斌, 楼白杨, 曹小海, 等. 纳米铜修饰多壁碳纳米管/石蜡相变驱动复合材料的制备及热性能 [J]. 复合材料学报, 2015, 32(2): 427–434. DOI: 10.13801/j.cnki.fhclxb.20140723.001.

    XU B, LOU B Y, CAO X H, et al. Preparation and thermal properties of copper modified multi-walled carbon nanotubes/paraffin phase transition-driven composites [J]. Journal of Composite Materials, 2015, 32(2): 427–434. DOI: 10.13801/j.cnki.fhclxb.20140723.001.
    [7] 张宏, 赵俊峰, 张锡兰, 等. ZnO/CNTs复合材料吸附脱除H2S的性能研究 [J]. 化学研究, 2017, 28(5): 612–616. DOI: 10.14002/j.hxya.2017.05.014.

    ZHANG H, ZHAO J F, ZHANG X L, et al. Study on the adsorption and removal of H2S by ZnO/CNTs composites [J]. Chinese Journal of Chemical Research, 2017, 28(5): 612–616. DOI: 10.14002/j.hxya.2017.05.014.
    [8] NEPAL A, SINGH G P, FLANDERS B N, et al. One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation [J]. Nanotechnology, 2013, 24(24): 245602. DOI: 10.1088/0957-4484/24/24/245602.
    [9] SHTERTSER A A, RYBIN D K, YU V Y, et al. Characterization of nanoscale detonation carbon produced in a pulse gas-detonation device [J]. Diamond and Related Materials, 2020, 101: 107553. DOI: 10.1016/j.diamond.2019.107553.
    [10] XIANG J X, LUO N, YAN H H, et al. Preparation and formation mechanism of spherical Cu nanoparticles by gaseous detonation [J]. Rare Metal Materials and Engineering, 2019, 48(10): 3113–3117.
    [11] ZHAO T J, WANG X H, LI X J, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials [J]. Materials Letters, 2019, 236: 179–182. DOI: 10.1016/j.matlet.2018.10.105.
    [12] ZHAO T J, LI X J, JOHN L, et al. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method [J]. Materials Research Express, 2018, 5(2). DOI: 10.1088/2053-1591/aaadd6.
    [13] ZHAO T J, LI X J, WANG Y, et al. Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method [J]. Materials Research Bulletin, 2018, 102: 153–159. DOI: 10.1016/j.materresbull.2018.02.033.
    [14] HE C, YAN H H, LI X J, et al. Ultrafast preparation of polymer carbon dots with solid-state fluorescence for white light-emitting diodes [J]. Materials Research Express, 2019, 6(6): 065609. DOI: 10.1088/2053-1591/ab0c42.
    [15] SHTERTSER A A, ULIANITSKY V Y, BATRAEV I S, et al. Production of nanoscale detonation carbon using a pulse gas-detonation device [J]. Technical Physics Letters, 2018, 44: 395–397. DOI: 10.1134/S1063785018050139.
    [16] 闫鸿浩, 赵铁军, 孙贵磊, 等. 气相爆轰合成碳包铁的影响因素 [J]. 无机材料学报, 2016, 31(5): 542–546. DOI: 10.15541/jim20150544.

    YAN H H, ZHAO T J, SUN G L, et al. Influencing factors of carbon-clad iron synthesis by gas-phase detonation [J]. Journal of Inorganic Materials, 2016, 31(5): 542–546. DOI: 10.15541/jim20150544.
    [17] YAN H H, ZHANG X F, LI X J, et al. The influence of ar on the synthesis of carbon-coated copper nanoparticles in gaseous detonation [J]. Current Nanoscience, 2018, 14(5): 360–365. DOI: 10.2174/1573413714666180502130314.
    [18] 杨瑞, 李晓杰, 闫鸿浩, 等. 初始温度及碳源对碳纳米管气相爆轰法合成的影响 [J]. 强激光与粒子束, 2017, 29(2): 56–60. DOI: 10.11884/HPLPB201729.160402.

    YANG R, LI X J, YAN H H, et al. Effects of initial temperature and carbon source on the synthesis of carbon nanotubes by vapor phase detonation [J]. High Power Laser and Particle Beams, 2017, 29(2): 56–60. DOI: 10.11884/HPLPB201729.160402.
    [19] FRY D, CHAKRABARTI A, KIM W, et al. Structural crossover in dense irreversibly aggregating particulate systems [J]. Physical Review E, 2004, 69(6): 061401. DOI: 10.1103/PhysRevE.69.061401.
    [20] DHAUBHADEL R, PIERCE F, CHAKRABARTI A, et al. Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol [J]. Physical Review E, 2006, 73(1): 011404. DOI: 10.1103/PhysRevE.73.011404.
    [21] KIM K, SORENSEN C M, CHAKRABARTI A. Universal occurrence of soot superaggregates with a fractal dimension of 2.6 in heavily sooting laminar diffusion flames [J]. Langmuir : the ACS journal of surfaces and colloids, 2004, 20(10): 3969-3973. DOI: 10.1021/la036085%2B.
    [22] 李晓杰, 杨瑞, 闫鸿浩. 氧气浓度对气相爆轰合成纳米碳球的影响 [J]. 高压物理学报, 2017, 31(1): 15–20. DOI: 10.11858/gywlxb.2017.01.003.

    LI X J, YANG R, YAN H H. Effect of oxygen concentration on synthesis of carbon nanospheres by gas-phase detonation [J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 15–20. DOI: 10.11858/gywlxb.2017.01.003.
    [23] LUO N, XIANG J X, SHEN T, et al. One-step gas-liquid detonation synthesis of carbon nano-onions and their tribological performance as lubricant additives [J]. Diamond and Related Materials, 2019, 97: 107448. DOI: 10.1016/j.diamond.2019.107448.
    [24] HE C, YAN H H, LI X J, et al. One-step rapid fabrication of high-purity onion-like carbons as efficient lubrication additives [J]. Journal of Materials Science, 2021, 56(2): 1286–1297. DOI: 10.1007/s10853-020-05311-0.
    [25] XIANG J X, LUO N, SHEN T, et al. Rapid synthesis of carbon/graphite encapsulated iron-based composite nanoparticles by a gaseous-liquid detonation [J]. Diamond and Related Materials, 2018, 90: 1–6. DOI: 10.1016/j.diamond.2018.09.017.
    [26] ZHAO T J, LI X J, YAN H H. Metal catalyzed preparation of carbon nanomaterials by hydrogen-oxygen detonation method [J]. Combustion and Flame, 2018, 196: 108–115. DOI: 10.1016/j.combustflame.2018.06.011.
    [27] 赵铁军, 王自法, 闫鸿浩, 等. 气相爆轰反应中纳米TiO2颗粒的动态收集及微观生长机制 [J]. 高压物理学报, 2021, 35(5): 42–47.

    ZHAO T J, WANG Z F, YAN H H, et al. Dynamic collection and microscopic growth mechanism of nano TiO2 articles in gas-phase detonation reaction [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 42–47.
    [28] ZHAO T J, WU L S, WANG Z F, et al. Insight on the growth mechanism of TiO2 nanoparticles via gaseous detonation intercepting collection [J]. Ceramics International, 2023, 49(6): 9857–9861. DOI: 10.1016/j.ceramint.2022.11.160.
    [29] YAN H H, ZHAO T J, LI X J, et al. Hydrogen and air detonation (deflagration) synthesis of carbon-encapsulated iron nanoparticles [J]. Combustion Explosion and Shock Waves, 2015, 51(4): 495–501. DOI: 10.1134/S0010508215040152.
    [30] YAN H H, HUN C H, LI X J, et al. Synthesis of carbon-encapsulated iron nanoparticles by gaseous detonation of hydrogen and oxygen at different temperatures within detonation tube [J]. Rare Metal Materials and Engineering, 2015, 44(9): 2152–2155. DOI: 10.1016/S1875-5372(16)30015-7.
    [31] 闫鸿浩, 赵铁军, 李晓杰, 等. 碳包覆铁纳米颗粒的气相爆轰合成 [J]. 高压物理学报, 2016, 30(3): 207–212. DOI: 10.11858/gywlxb.2016.03.005.

    YAN H H, ZHAO T J, LI X J, et al. Vapor phase detonation synthesis of carbon-coated iron nanoparticles [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 207–212. DOI: 10.11858/gywlxb.2016.03.005.
    [32] 潘训岑, 李雪琪, 李晓杰, 等. 气相爆轰法合成超细碳包铁纳米颗粒 [J]. 稀有金属材料与工程, 2019, 48(3): 981–986.

    PAN X C, LI X Q, LI X J, et al. Synthesis of ultrafine carbon-clad iron-clad nanoparticles by gas phase detonation method [J]. Rare Metal Materials and Engineering, 2019, 48(3): 981–986.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  10
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2023-12-04
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回