长脉宽爆炸波与圆柱壳作用的波系演化与载荷分布特征

张军 杨茂 毛勇建 穆云飞 张焕好 陈志华 冯晓伟

张军, 杨茂, 毛勇建, 穆云飞, 张焕好, 陈志华, 冯晓伟. 长脉宽爆炸波与圆柱壳作用的波系演化与载荷分布特征[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0470
引用本文: 张军, 杨茂, 毛勇建, 穆云飞, 张焕好, 陈志华, 冯晓伟. 长脉宽爆炸波与圆柱壳作用的波系演化与载荷分布特征[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0470
ZHANG Jun, YANG Mao, MAO Yongjian, MU Yunfei, ZHANG Huanhao, CHEN Zhihua, FENG Xiaowei. The wave evolution and pressure distribution characteristics of the interaction between long-duration blast load and cylindrical structure[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0470
Citation: ZHANG Jun, YANG Mao, MAO Yongjian, MU Yunfei, ZHANG Huanhao, CHEN Zhihua, FENG Xiaowei. The wave evolution and pressure distribution characteristics of the interaction between long-duration blast load and cylindrical structure[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0470

长脉宽爆炸波与圆柱壳作用的波系演化与载荷分布特征

doi: 10.11883/bzycj-2023-0470
基金项目: 国家自然科学基金(12072334, 11602256)
详细信息
    作者简介:

    张 军(1988- ),男,博士,副研究员,aabuzhangjun@foxmail.com

    通讯作者:

    毛勇建(1976- ),男,博士,研究员,maoyj@caep.cn

  • 中图分类号: O381

The wave evolution and pressure distribution characteristics of the interaction between long-duration blast load and cylindrical structure

  • 摘要: 长脉宽爆炸波与结构作用的波传播及其载荷分布规律是大型爆炸防护设计与安全评估的重要基础。为了掌握长脉宽爆炸波与圆柱壳的相互作用机制及其作用下圆柱壳表面的载荷分布规律,开展了100 ms级冲击波圆柱绕流的激波管试验,并采用大涡模拟方法和高阶WENO-TCD(weighted essentially non-oscillatory-tuned centered difference)混合格式进一步对150 ms长脉宽冲击波与圆柱作用过程的波系演化与压力分布进行了数值分析。结果表明:数值仿真与压力实测结果吻合较好,长脉宽作用下圆柱壳载荷分布呈现出明显的角度和高度相关性,背面压力高于侧面甚至与迎爆面相当,具有不同于传统短脉宽冲击波传播中的压力衰减模式。流场的压力云纹和波系三维结构演化揭示了侧端面的突然扩张是压力初期震荡及相比于正面和背面压力更低的主要原因;系列绕射激波在壳体背面碰撞与反射,以及序列减速激波在135°相位附近的驻定与叠加作用,是引起背面压力呈现出载荷整体提升的主要机制。此外,背风面上尾涡结构的形成与演化过程受边界效应的影响是导致长脉宽圆柱壳载荷分布沿高度方向出现差异的关键因素。
  • 图  1  激波管试验系统

    Figure  1.  The system of the shock tube experiments

    图  2  圆柱壳与测点布局

    Figure  2.  Cylindrical shells and measuring points layout

    图  3  计算模型

    Figure  3.  Schematic of the computational model

    图  4  流场计算域网格分布

    Figure  4.  Grid distribution in computational domain

    图  5  不同网格尺度下圆柱壳体表面压力载荷分布曲线

    Figure  5.  Grid scales effect on the surface pressure load distribution curves of cylindrical shell

    图  6  H = 0.9 m时,表面压力监测点计算结果与测试结果的对比

    Figure  6.  Comparison of the overpressure with the corresponding experimental results at H = 0.9 m

    图  7  H = 0 m时,圆柱壳体表面压力载荷变化曲线

    Figure  7.  The overpressure histories on the surface of cylindrical structure at H = 0 m

    图  8  H = 0 m时,压力载荷峰值沿角度的分布曲线

    Figure  8.  Distribution of the peak overpressure along phase at H = 0 m

    图  9  长脉宽平面冲击波与圆柱壳体作用过程的密度纹影图(H = 0 m)

    Figure  9.  Numerical schlieren image of the interaction between long-duration blast and cylindrical structure at H = 0 m

    图  10  单脉冲激波与圆柱壳体作用过程的激波结构[10]

    Figure  10.  The shock structure of the interaction between a pulse shock wave and a cylindrical structure[10]

    图  11  H = 0 m时,入射激波I1~I4与壳体作用过程中壳体表面4个测点压力载荷变化曲线

    Figure  11.  The overpressure on the surface of cylindrical structure at H = 0 m

    图  12  长脉宽平面冲击波与圆柱壳体作用过程中壳体表面压力分布图(左图为云纹图;中间为迎爆面压力分布;右图为背部压力分布)

    Figure  12.  Pressure distribution on the surface of a cylindrical structure (The left image is a moiré pattern; the middle is the pressure distribution on the blasting surface; the right image is the pressure distribution on the back)

    图  13  不同方位处,圆柱壳体表面压力载荷变化曲线

    Figure  13.  Overpressure load on the surface of cylindrical structure at different orientations

    图  14  测点压力载荷峰值沿角度和高度的分布规律

    Figure  14.  Distribution of the peak overpressure along the angle and height

    图  15  圆柱壳体下游流场的三维尾涡结构

    Figure  15.  The three-dimensional wake structures at the leeward of a cylindrical structure

  • [1] 吴昊, 方秦, 龚自明, 等. 冲击爆炸作用对核电站安全壳毁伤效应研究的进展 [J]. 防灾减灾工程学报, 2012, 32(3): 384–392. DOI: 10.3969/j.issn.1672-2132.2012.03.020.

    WU H, FANG Q, GONG Z M, et al. State of arts of impact and blast effects on the NPPC [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(3): 384–392. DOI: 10.3969/j.issn.1672-2132.2012.03.020.
    [2] CLUBLEY S K. Long duration blast loading of cylindrical shell structures with variable fill level [J]. Thin-Walled Structures, 2014, 85: 234–249. DOI: 10.1016/j.tws.2014.08.021.
    [3] CLUBLEY S K. Non-linear long duration blast loading of cylindrical shell structures [J]. Engineering Structures, 2014, 59: 113–126. DOI: 10.1016/j.engstruct.2013.10.030.
    [4] 沙莎, 陈志华, 姜孝海. 激波与障碍物作用加速衰减的数值研究 [J]. 工程力学, 2014, 31(9): 239–244. DOI: 10.6052/j.issn.1000-4750.2012.11.0914.

    SHA S, CHEN Z H, JIANG X H. Investigations into the accelerating attenuation of shock waves by obstacles [J]. Engineering Mechanics, 2014, 31(9): 239–244. DOI: 10.6052/j.issn.1000-4750.2012.11.0914.
    [5] 高康华, 李斌, 刘宇都, 等. 外爆条件下冲击波与组合壳结构的相互作用 [J]. 爆炸与冲击, 2019, 39(5): 052101. DOI: 10.11883/bzycj-2017-0370.

    GAO K H, LI B, LIU Y D, et al. Interaction of a shock wave with a composite shell structure under an external explosion [J]. Explosion and Shock Waves, 2019, 39(5): 052101. DOI: 10.11883/bzycj-2017-0370.
    [6] 杨科之, 刘盛, 周布奎. 光滑坑道中基于波形参数的冲击波衰减规律 [J]. 防护工程, 2022, 44(4): 30–35. DOI: 10.3969/j.issn.1674-1854.2022.04.005.

    YANG K Z, LIU S, ZHOU B K. The law of shock wave attenuation based on waveform parameters in smooth tunnels [J]. Protective Engineering, 2022, 44(4): 30–35. DOI: 10.3969/j.issn.1674-1854.2022.04.005.
    [7] GAUTIER A, SOCHET I, COURTIAUD S, et al. Evaluation of shock wave properties interacting with a parallelepipedal obstacle [J]. International Journal of Protective Structures, 2022, 13(4): 716–731. DOI: 10.1177/20414196221114908.
    [8] GAUTIER A, SOCHET I, COURTIAUD S. Analysis of shock wave interaction with an obstacle by coupling pressure measurements and visualization [J]. Sensors, 2022, 22(9): 3325. DOI: 10.3390/s22093325.
    [9] ZHANG H H, CHEN Z H, GUO Z Q, et al. Characteristic behavior of shock pattern and primary vortex loop of a supersonic square jet [J]. International Journal of Heat and Mass Transfer, 2017, 115: 347–363. DOI: 10.1016/j.ijheatmasstransfer.2017.07.002.
    [10] ZHANG H H, AUBRY N, CHEN Z H, et al. The evolution of the initial flow structures of a highly under-expanded circular jet [J]. Journal of Fluid Mechanics, 2019, 871: 305–331. DOI: 10.1017/jfm.2019.285.
    [11] PANTANO C, DEITERDING R, HILL D J, et al. A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows [J]. Journal of Computational Physics, 2007, 221(1): 63–87. DOI: 10.1016/j.jcp.2006.06.011.
    [12] 张焕好, 肖焱丰, 郑纯, 等. 超声速横向射流三维流场结构特征 [J]. 推进技术, 2023, 44(1): 210730. DOI: 10.13675/j.cnki.tjjs.210730.

    ZHANG H H, XIAO Y F, ZHENG C, et al. Three-dimensional flow characterizes of transverse jet injection into supersonic crossflow [J]. Journal of Propulsion Technology, 2023, 44(1): 210730. DOI: 10.13675/j.cnki.tjjs.210730.
    [13] VITI V, NEEL R, SCHETZ J A. Detailed flow physics of the supersonic jet interaction flow field [J]. Physics of Fluids, 2009, 21(4): 046101. DOI: 10.1063/1.3112736.
  • 加载中
图(15)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  23
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-02-09
  • 网络出版日期:  2024-03-11

目录

    /

    返回文章
    返回