连续纤维增强高孔隙复合材料的抗侵彻性能研究

王洋 李广滨 王桂吉 唐恩凌 高国文 彭辉

王洋, 李广滨, 王桂吉, 唐恩凌, 高国文, 彭辉. 连续纤维增强高孔隙复合材料的抗侵彻性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0472
引用本文: 王洋, 李广滨, 王桂吉, 唐恩凌, 高国文, 彭辉. 连续纤维增强高孔隙复合材料的抗侵彻性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0472
WANG Yang, LI Guangbin, WANG Guiji, TANG Enling, GAO Guowen, PENG Hui. A study of anti-penetration properties of continuous fiber-reinforced high-porosity composites1,2[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0472
Citation: WANG Yang, LI Guangbin, WANG Guiji, TANG Enling, GAO Guowen, PENG Hui. A study of anti-penetration properties of continuous fiber-reinforced high-porosity composites1,2[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0472

连续纤维增强高孔隙复合材料的抗侵彻性能研究

doi: 10.11883/bzycj-2023-0472
基金项目: 国家自然科学基金重点项目(12141203)
详细信息
    作者简介:

    王 洋(1998- ),硕士研究生,wangyang.0331@163.com

    通讯作者:

    彭 辉(1986- ),博士,副研究员,penghui299@163.com

  • 中图分类号: O347.3; TB332

A study of anti-penetration properties of continuous fiber-reinforced high-porosity composites1,2

  • 摘要: 首先,用二级轻气炮发射Q235钢质弹丸,对连续纤维增强高孔隙复合材料开展弹道侵彻实验,计算了弹道极限,归纳和分析了其损伤的形态和模式,并将这种复合材料的侵彻防护性能与其他材料进行了比较;然后,对弹道侵彻连续纤维增强高孔隙复合材料进行了数值模拟,比较了剩余速度、损伤的形态和范围,模拟结果与实验结果吻合较好;进而通过观察有限元模拟的弹孔形态、应力分布和损伤分布等方式,对侵彻过程的损伤机理进行了分析。研究结果可为复合材料在防热、冲击防护与承受外载荷等多功能一体化的应用提供参考依据。
  • 图  1  连续纤维增强高孔隙复合材料靶板

    Figure  1.  Target plate made from continuous fiber reinforced high-porosity lightweight heat-resistant composite

    图  2  二级轻气炮构造示意图[15]

    Figure  2.  Schematic diagram of two-stage light gas gun[15]

    图  3  弹道冲击实验后弹丸回收样品

    Figure  3.  Recovered projectiles after the ballistic impact experiment

    图  4  靶板迎弹面损伤形态

    Figure  4.  Damage morphology of the impact surface of the target plate

    图  5  背面裂缝型损伤形态(实验6)

    Figure  5.  Appearance of back-crack damage pattern (shot 6)

    图  6  背面炸裂型损伤形态

    Figure  6.  Appearance of back-burst damage pattern

    图  7  切孔型损伤形态

    Figure  7.  Appearance ofpenetrated damage pattern

    图  8  弹体侵彻的剩余速度与初速度的关系曲线

    Figure  8.  Relationship between residual velocity and initial velocity in projectile penetration

    图  9  不同材料比吸能对比[20-26]

    Figure  9.  Comparison of specific absorption energy of different materials[20-26]

    图  10  侵彻有限元模型

    Figure  10.  Finite element model of penetration

    图  11  弹丸侵彻的剩余速度与初速度的实验与数值模拟结果的关系

    Figure  11.  Experimental and numerical simulation results of residual velocity and initial velocity in projectile penetration

    图  12  实验与数值模拟的损伤形态

    Figure  12.  Damage morphology obtained from experiment and numerical simulation

    图  13  弹丸速度-时间关系曲线

    Figure  13.  Velocity - time curves of projectile

    图  14  第2发实验对应数值模拟的侵彻过程有效应力云图

    Figure  14.  Effective stress cloud pictures obtained from numerical simulation of bullet penetration process of shot 2

    图  15  不同初速度下的弹孔形态

    Figure  15.  Bullet hole patterns under different initial velocities

    图  16  弹丸接触力随时间的变化

    Figure  16.  Variation of projectile contact force with time

    图  17  弹孔及周围的应力分布云图

    Figure  17.  The stress distribution cloud picture of the penetration hole and its surroundings

    图  18  弹孔周围不同的失效判据因子对应的损伤因子分布云图

    Figure  18.  Damage factor evolution distribution cloud map corresponding to different failure criterion factors surrounding the projectile hole

    图  19  不同损伤类型的实验结果与数值仿真损伤因子分布云图

    Figure  19.  Experimental results and numerical simulation damage factor distribution cloud pictures of different damage types

    图  20  靶板动能、内能及其占比与初速度的关系

    Figure  20.  Variations of kinetic energy, internal energy and their proportions of target plate with initial velocity

    表  1  侵彻实验结果

    Table  1.   Experimental results of penetration

    实验 初速度/(m∙s−1) 末速度/(m∙s−1) 弹丸动能/J 损伤类型
    1 1640.0 1227.5 218.83 切孔型
    2 1450.9 1040.1 189.31 切孔型
    3 1082.0 715.5 121.87 背面炸裂型
    4 1046.2 651.0 124.09 背面炸裂型
    5 583.7 未穿透 63.03 未穿透
    6 775.0 263.5 98.27 背面裂缝型
    下载: 导出CSV

    表  2  靶板迎弹面、背弹面损伤范围

    Table  2.   2Damage range of the impact surface and back surface of the target plate

    实验 初速度/(m∙s−1) 迎弹面损伤范围
    直径/mm
    背弹面损伤范围
    直径/mm
    1 1640.0 6.17 14.80
    2 1450.9 8.63 14.78
    3 1082.0 6.19 18.83
    4 1046.2 5.19 16.07
    5 583.7 5.23 未穿透
    6 775.0 5.52 17.37
    下载: 导出CSV

    表  3  不同初速度下的比吸能

    Table  3.   Specific absorption energy under different initial velocities

    实验 初速度/
    (m∙s−1)
    末速度/
    (m∙s−1)
    弹丸动能
    变化/J
    比吸能/
    (MJ∙kg−1)
    1 1640 1227.5 221.52 0.76
    2 1450.9 1040.1 191.64 0.66
    3 1082 715.5 123.37 0.43
    4 1045.8 651 125.45 0.43
    5 583.7 未穿透 63.81 0.37
    6 775 263.5 99.48 0.34
    下载: 导出CSV

    表  4  靶板的材料参数

    Table  4.   Material parameters of the target plate

    ρ/(g·cm-3) E1/GPa E2/GPa E3/GPa ν21 ν31 ν32 G12/GPa G23/GPa G13/GPa Xt/MPa
    0.911 4.00 4.00 1.54 0.19 0.25 0.25 3.50 1.60 1.60 30.0
    Yt/MPa Xc/MPa Yc/MPa Zt/MPa Zc/MPa S12/MPa S23/MPa S13/MPa mi Crate $ {\dot{\varepsilon }}_{0} $/s−1
    30.0 89.7 89.7 10.0 78.0 20.0 15.0 15.0 1.0~3.0 0.03~0.2 10.0
    下载: 导出CSV

    表  5  Q235钢的材料参数[31-32]

    Table  5.   Material parameters of Q235 steel[31-32]

    材料密度/(kg·cm−3) 弹性模量/GPa 泊松比 屈服极限/MPa
    7850 210 0.3 235
    切线模量/GPa 硬化参数β 参考应变率/s−1 Cowper-Symonds
    参数n
    8 1 40.4 5
    下载: 导出CSV

    表  6  数值模拟结果与实验结果对比

    Table  6.   Comparison of numerical simulation results with experimental results

    实验 实验初速度/(m·s−1) 实验末速度/(m·s−1) 模拟末速度/(m·s−1) 模拟与实验结果的偏差/%
    1 1640.0 1227.5 1202 2.04
    2 1450.9 1040.1 995 4.34
    3 1082.0 715.5 697 2.52
    4 1046.0 651.0 624 4.59
    5 583.7 未穿透,弹孔深约12 mm 未穿透,弹孔深约13 mm 8.30
    6 775.0 263.5 280 7.22
    下载: 导出CSV
  • [1] 胡宁, 赵丽滨. 航空航天复合材料力学 [M]. 北京: 科学出版社, 2021: 4–5.

    HU N, ZHAO L B. Mechanics of aerospace composite materials [M]. Beijing: Science Press, 2021: 4–5.
    [2] 孙卫兵. 纤维增强复合材料层合板抗高速破片侵彻性能研究 [D]. 武汉: 武汉理工大学, 2020: 1–3. DOI: 10.27381/d.cnki.gwlgu.2020.001335.

    SUN W B. Research on penetration resistance of fiber reinforced composite laminates under high-speed fragments [D]. Wuhan: Wuhan University of Technology, 2020: 1–3. DOI: 10.27381/d.cnki.gwlgu.2020.001335.
    [3] 张昊, 孙宏杰, 孙建波, 等. 复合材料风扇机匣包容性相关研究进展 [J]. 复合材料科学与工程, 2022(7): 115–120. DOI: 10.19936/j.cnki.2096-8000.20220728.019.

    ZHANG H, SUN H J, SUN J B, et al. Research progress on the tolerance of composite containment fan case [J]. Composites Science and Engineering, 2022(7): 115–120. DOI: 10.19936/j.cnki.2096-8000.20220728.019.
    [4] 马东方, 马伯翰, 张幸锵. 冲击荷载下植物纤维增强高聚物复合材料的力学性能 [J]. 高压物理学报, 2019, 33(2): 024204. DOI: 10.11858/gywlxb.20180656.

    MA D F, MA B H, ZHANG X Q. Mechanical properties of natural fiber reinforced polymer composites under impact loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024204. DOI: 10.11858/gywlxb.20180656.
    [5] JENQ S T, JING H S, CHUNG C. Predicting the ballistic limit for plain woven glass/epoxy composite laminate [J]. International Journal of Impact Engineering, 1994, 15(4): 451–464. DOI: 10.1016/0734-743X(94)80028-8.
    [6] JENQ S T, MO J J. Ballistic impact response for two-step braided three-dimensional textile composites [J]. AIAA Journal, 1996, 34(2): 375–384. DOI: 10.2514/3.13074.
    [7] LÓPEZ-PUENTE J, ZAERA R, NAVARRO C. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 374–387. DOI: 10.1016/j.compositesa.2007.10.004.
    [8] 杜忠华, 赵国志, 王晓鸣, 等. 复合材料层合板抗弹性的工程分析模型 [J]. 兵器材料科学与工程, 2002, 25(1): 8–10,60. DOI: 10.3969/j.issn.1004-244X.2002.01.002.

    DU Z H, ZHAO G Z, WANG X M, et al. Engineering analysis model of bullet-proof property of composite laminates [J]. Ordnance Material Science and Engineering, 2002, 25(1): 8–10,60. DOI: 10.3969/j.issn.1004-244X.2002.01.002.
    [9] 王元博. 纤维增强层合材料的抗弹性能和破坏机理研究 [D]. 合肥: 中国科学技术大学, 2006: 63–67.

    WANG Y B. Research on ballistics resistance and failure mechanism of fiber-reinforced laminate [D]. Hefei: University of Science and Technology of China, 2006: 63–67.
    [10] 江琦. 改性PS/UHMWPE纤维复合材料制备及侵彻性能研究 [D]. 武汉: 武汉理工大学, 2017: 39–40.

    JIANG Q. Preparation and penetration properties of modified polystyrene/UHMWPE fiber composites [D]. Wuhan: Wuhan University of Technology, 2017: 39–40.
    [11] 谭焕成, 许善迎, 黄雄, 等. 三维四向编织复合材料宏观有限元模型冲击损伤仿真及试验验证 [J]. 复合材料学报, 2018, 35(5): 1139–1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002.

    TAN H C, XU S Y, HUANG X, et al. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites [J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139–1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002.
    [12] 王云聪, 何煌, 曾首义. Kevlar纤维层合板抗弹性能的数值模拟 [J]. 四川兵工学报, 2011, 32(3): 17–20. DOI: 10.3969/j.issn.1006-0707.2011.03.006.

    WANG Y C, HE H, ZENG S Y. Numerical simulation of anti-resilience for Kevlar fiber laminate [J]. Journal of Ordnance Equipment Engineering, 2011, 32(3): 17–20. DOI: 10.3969/j.issn.1006-0707.2011.03.006.
    [13] JAGTAP K R, GHORPADE S Y, LAL A, et al. Finite element simulation of low velocity impact damage in composite laminates [J]. Materials Today: Proceedings, 2017, 4(2): 2464–2469. DOI: 10.1016/j.matpr.2017.02.098.
    [14] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展 [J]. 材料工程, 2020, 48(8): 14–24. DOI: 10.11868/j.issn.1001-4381.2020.000206.

    FENG Z H, SHI J J, KONG L, et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles [J]. Journal of Materials Engineering, 2020, 48(8): 14–24. DOI: 10.11868/j.issn.1001-4381.2020.000206.
    [15] 杜明俊. 柔性复合材料结构超高速撞击防护性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 15–17.

    DU M J. Study on hypervelocity impact on flexible composite materials [D]. Harbin: Harbin Institute of Technology, 2016: 15–17.
    [16] 陈战辉. 碳纤维平纹织物层合板高速冲击损伤研究 [D]. 西安: 西北工业大学, 2019: 20–23. DOI: 10.27406/d.cnki.gxbgu.2019.000202.

    CHEN Z H. Investigation on damage in carbon woven composite laminates caused by high velocity impact [D]. Xi’an: Northwestern Polytechnical University, 2019: 20–23. DOI: 10.27406/d.cnki.gxbgu.2019.000202.
    [17] LAMBERT J P, JONAS G H. Towards standardization in terminal ballistics testing: velocity representation: BRL Report No. 182 [R]. Fort Belvoir: Defense Technical Information Center, 1976.
    [18] LEE J H, LOYA P E, LOU J, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration [J]. Science, 2014, 346(6213): 1092–1096. DOI: 10.1126/science.1258544.
    [19] HYON J, GONZALES M, STREIT J K, et al. Projectile impact shock-induced deformation of one-component polymer nanocomposite thin films [J]. ACS Nano, 2021, 15(2): 2439–2446. DOI: 10.1021/acsnano.0c06146.
    [20] DENG Y F, ZHANG W, CAO Z S. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against hemispherical-nosed projectiles impact [J]. Materials & Design, 2012, 41: 266–281. DOI: 10.1016/j.matdes.2012.05.021.
    [21] DENGY F, ZHANG W, YANG Y G, et al. The ballistic performance of metal plates subjected to impact by projectiles of different strength [J]. Materials & Design, 2014, 58: 305–315. DOI: 10.1016/j.matdes.2013.12.073.
    [22] DEAN J, DUNLEAVY C S, BROWN P M, et al. Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1250–1258. DOI: 10.1016/j.ijimpeng.2009.05.002.
    [23] 沈玲燕. 三维正交机织玻璃纤维复合材料动态性能和抗侵彻规律研究 [D]. 合肥: 中国科学技术大学, 2013: 43–44.

    SHEN L Y. Research on dynamic and penetration properties of the three-dimensional orthogonal woven glass fiber composites [D]. Hefei: University of Science and Technology of China, 2013: 43–44.
    [24] HONG D, LI W B, ZHENG Y, et al. Experimental research on tungsten alloy spherical fragments penetrating into carbon fiber target plate [J]. Latin American Journal of Solids and Structures, 2021, 18(5): e384. DOI: 10.1590/1679-78256510.
    [25] 李硕, 王志军, 田非, 等. 芳纶复合材料抗破片模拟弹丸侵彻的一种工程分析方法 [J]. 弹箭与制导学报, 2014, 34(5): 98–101. DOI: 10.15892/j.cnki.djzdxb.2014.05.025.

    LI S, WANG Z J, TIAN F, et al. Engineering analysis on aramid composite penetration performance by fragment simulating projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(5): 98–101. DOI: 10.15892/j.cnki.djzdxb.2014.05.025.
    [26] ZHIKHAREV M V, SAPOZHNIKOV S B. Two-scale modeling of high-velocity fragment GFRP penetration for assessment of ballistic limit [J]. International Journal of Impact Engineering, 2017, 101: 42–48. DOI: 10.1016/j.ijimpeng.2016.08.005.
    [27] 黄显晴. 考虑应变率效应的玄武岩纤维复合材料低速冲击性能分析 [D]. 长春: 吉林大学, 2021: 33–35. DOI: 10.27162/d.cnki.gjlin.2021.001772.

    HUANG X Q. Analysis of low velocity impact properties of basalt fiber composites considering strain rate effect [D]. Changchun: Jilin University, 2021: 33–35. DOI: 10.27162/d.cnki.gjlin.2021.001772.
    [28] 朱艳荣. 纤维增强复合材料应变率效应的数值仿真研究 [D]. 长春: 吉林大学, 2019: 11–14.

    ZHU Y R. Numerical simulation of strain rate effect with fiber reinforced composite [D]. Changchun: Jilin University, 2019: 11–14.
    [29] 辛士红. 纤维增强树脂基复合材料层合板抗侵彻性能数值模拟研究 [D]. 合肥: 中国科学技术大学, 2015: 17–21.

    XIN S H. Numerical study on the penetration resistance of fiber-reinforced plastic laminates [D]. Hefei: University of Science and Technology of China, 2015: 17–21.
    [30] 刘万雷, 常新龙, 张晓军, 等. 基于改进Hashin准则的复合材料低速冲击损伤研究 [J]. 振动与冲击, 2016, 35(12): 209–214. DOI: 10.13465/j.cnki.jvs.2016.12.033.

    LIU W L, CHANG X L, ZHANG X J, et al. Low-velocity impact analysis of composite plates based on modified Hashin criterion [J]. Journal of Vibration and Shock, 2016, 35(12): 209–214. DOI: 10.13465/j.cnki.jvs.2016.12.033.
    [31] 张元豪, 陈长海, 朱锡. Q235钢板对高速弹的抗侵彻特性研究 [J]. 舰船科学技术, 2017, 39(2): 52–54. DOI: 10.3404/j.issn.1672-7619.2017.02.010.

    ZHANG Y H, CHEN C H, ZHU X. Ballistic performance of Q235 steel plate subjected to impact by middle and high velocity projectiles [J]. Ship Science and Technology, 2017, 39(2): 52–54. DOI: 10.3404/j.issn.1672-7619.2017.02.010.
    [32] 吴小峰, 李戈操. 某型拖车副车架的塑性变形分析及优化设计 [J]. 河北农机, 2019(12): 91–92. DOI: 10.15989/j.cnki.hbnjzzs.2019.12.063.
    [33] 张明, 原梅妮, 向丰华, 等. Kevlar-129纤维复合材料抗侵彻性能数值模拟 [J]. 材料导报, 2015, 29(24): 117–121. DOI: 10.11896/j.issn.1005-023X.2015.24.027.

    ZHANG M, YUAN M N, XIANG F H, et al. Numerical simulation of anti-penetration performance on Kevlar-129 fiber reinforced composite materials [J]. Materials Reports, 2015, 29(24): 117–121. DOI: 10.11896/j.issn.1005-023X.2015.24.027.
    [34] 刘红霞. 复合材料分层损伤的数值模拟 [D]. 西安: 西北工业大学, 2006: 38.
    [35] 夏靖雯, 陈智刚, 顾敏辉, 等. 钨合金破片侵彻2024铝靶的数值模拟研究 [J]. 振动与冲击, 2023, 42(15): 156–162, 224. DOI: 10.13465/j.cnki.jvs.2023.15.019.

    XIA J W, CHEN Z G, GU M H, et al. Numerical simulation for tungsten alloy fragments penetrating 2024 aluminum target [J]. Journal of Vibration and Shock, 2023, 42(15): 156–162, 224. DOI: 10.13465/j.cnki.jvs.2023.15.019.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  6
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-04-16
  • 网络出版日期:  2024-04-17

目录

    /

    返回文章
    返回