起爆方式对椭圆截面战斗部破片速度分布的影响

邓宇轩 张先锋 刘闯 李鹏程 马正伟 刘子涵

邓宇轩, 张先锋, 刘闯, 李鹏程, 马正伟, 刘子涵. 起爆方式对椭圆截面战斗部破片速度分布的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0041
引用本文: 邓宇轩, 张先锋, 刘闯, 李鹏程, 马正伟, 刘子涵. 起爆方式对椭圆截面战斗部破片速度分布的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0041
DENG Yuxuan, ZHANG Xianfeng, LIU Chuang, LI Pengcheng, MA Zhengwei, LIU Zihan. Effect of initiation models on the fragment velocity distribution of elliptical cross-section warhead[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0041
Citation: DENG Yuxuan, ZHANG Xianfeng, LIU Chuang, LI Pengcheng, MA Zhengwei, LIU Zihan. Effect of initiation models on the fragment velocity distribution of elliptical cross-section warhead[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0041

起爆方式对椭圆截面战斗部破片速度分布的影响

doi: 10.11883/bzycj-2024-0041
基金项目: 国家自然科学基金(12141202,12202205)
详细信息
    作者简介:

    邓宇轩(1998- ),男,博士研究生,dengyuxuan103@163.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,博士生导师,lynx@njust.edu.cn

  • 中图分类号: O383

Effect of initiation models on the fragment velocity distribution of elliptical cross-section warhead

  • 摘要: 为研究椭圆截面战斗部在不同起爆方式下破片速度的分布特性,建立了5种具有不同短长轴比的椭圆截面战斗部数值模拟模型。开展了端面中心单点、短(长)轴中点双点、短长轴中点4点以及端面面起爆5种起爆方式数值模拟研究,分析了不同起爆方式下椭圆截面战斗部破片的速度分布及能量输出特性。研究结果表明:在径向方向,战斗部在不同起爆方式下破片最大径向速度变化规律基本一致,均呈现由长轴至短轴方向对数增长,且随着短长轴比的增大,短长轴方向破片速度差值逐渐减小。然而,不同起爆方式下椭圆截面战斗部最大速度截面上破片速度平均值存在明显差异,具体表现为端面起爆时的破片径向平均速度最高,单点起爆最低,且随着起爆点数量的增加,最大速度截面上的破片的整体平均速度逐渐增大。在轴向方向,受端面稀疏波的影响,不同方位角最大破片速度均出现在靠近非起爆端1/4处,且起爆点在短轴轴线上相较于在长轴轴线上会提高靠近起爆端长轴方向的破片速度,但短轴方向沿轴向的破片速度分布无明显差异。此外,不同起爆方式对椭圆截面装药爆炸能量输出特性无明显影响,其中27%的装药能量转化为壳体动能,有50%的能量被壳体断裂变形以及空气冲击波消耗。
  • 图  1  数值模拟模型

    Figure  1.  Simulation model

    图  2  网格敏感性分析

    Figure  2.  Grid sensitivity analysis

    图  3  试验[29]与数值模拟结果对比

    Figure  3.  Comparison of experimental[29] and numerical simulation results

    图  4  不同起爆方式示意图

    Figure  4.  Initial mode diagram

    图  5  战斗部壳体膨胀过程

    Figure  5.  Expansion process of warhead casing

    图  6  战斗部破片最大径向速度分布规律

    Figure  6.  Distribution law of maximum radial velocity of fragment

    图  7  不同起爆方式下爆轰波的轴向演化

    Figure  7.  Axial evolution of detonation wave under different initiation modes

    图  8  不同起爆方式下最大速度截面上破片的径向平均速度

    Figure  8.  Average radial velocity of fragments on the maximum velocity section under different initiation modes

    图  9  不同起爆方式下的爆轰驱动示意图

    Figure  9.  Detonation drive schematics under different detonation modes

    图  10  不同起爆方式下短轴方向破片的速度分布

    Figure  10.  The axial velocity distribution of fragments in the minor axis direction under different initiation modes

    图  11  不同起爆方式下长轴方向破片速度分布

    Figure  11.  The axial velocity distribution of fragments in the major axis direction under different initiation modes

    图  12  中心线起爆的数值模拟模型

    Figure  12.  Numerical simulation model of centerline initiation

    图  13  中心线起爆时短长轴破片的轴向速度分布

    Figure  13.  Axial velocity distribution of minor and major axis fragments under centerline initiation

    图  14  μ=0.55时破片的加速过程

    Figure  14.  Fragment acceleration process at μ=0.55

    图  15  2种典型起爆方式下长轴截面爆轰波传播过程

    Figure  15.  The propagation process of detonation wave in major axis cross section under two typical initiation modes

    图  16  不同起爆方式下椭圆截面战斗部能量分配

    Figure  16.  Energy distribution of elliptical section warhead under different detonation modes

    表  1  45钢 Johnson-Cook 本构参数[8]

    Table  1.   Johnson-Cook constitutive parameters of 45 steel[8]

    材料 A/MPa B/MPa n C m Tm/K
    AISI 1045 507 320 0.28 0.064 1.06 1793
    下载: 导出CSV

    表  2  B炸药的JWL状态方程参数

    Table  2.   JWL state equation parameters of composition B

    ρ/(g·cm−3) D/(m·s−1) pCJ/GPa C1/GPa C2/GPa R1 R2 ω
    1.717 7980 29 542 7.68 4.2 1.1 0.24
    下载: 导出CSV

    表  3  战斗部参数

    Table  3.   Parameters of warhead

    弹体编号a/mmb/mmμ壳体厚度/mm
    E135.5814.230.403.763
    E230.3416.690.553.956
    E326.8918.820.704.053
    E424.4020.740.854.096
    C122.5022.501.004.108
    下载: 导出CSV
  • [1] 杨祥, 武海军, 皮爱国, 等. 椭圆截面杀伤战斗部破片初速沿周向分布规律 [J]. 北京理工大学学报, 2018, 38(S2): 178–183. DOI: 10.15918/j.tbit1001-0645.2018.s2.040.

    YANG X, WU H J, PI A G, et al. Fragment velocity distribution of elliptical cross-section killing warhead along circumference [J]. Transactions of Beijing Institute of Technology, 2018, 38(S2): 178–183. DOI: 10.15918/j.tbit1001-0645.2018.s2.040.
    [2] 冯顺山, 蒋建伟, 何顺录, 等. 偏轴心起爆破片初速径向分布规律研究 [J]. 兵工学报, 1993(S1): 12–16.

    FENG S S, JIANG J W, HE S L, et al. On the pattern of radial distribution pattern of initial velocities of fragments under asymmetrical initiation [J]. Acta Armamentarii, 1993(S1): 12–16.
    [3] RESNYANSKY A, WILDEGGER-GAISSMAIER A E, KATSELIS G. Directional fragmentation warheads: a theoretical and experimental investigation [C] // 18th International Symposium on Ballistics. San Antonio, TX, USA, 1999: 543–550.
    [4] HELD M. Velocity enhanced warheads [J]. Journal of Explosives and Propellants, 2001, 17(2): 1–12.
    [5] HELD M. Aimable fragmenting warhead [C] // 13th International Symposium on Ballistics. Stockholm, Sweden: National Defence Research Establishment, 1992: 539–548.
    [6] HUANG G Y, LI W, FENG S S. Fragment velocity distribution of cylindrical rings under eccentric point initiation [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 215–220. DOI: 10.1002/prep.201400180.
    [7] GURNEY R W. The initial velocities of fragments from bombs, shells and grenades: report No 405 [R]. Aberdeen Proving Ground, MD: Ballistic Research Laboratories, 1943.
    [8] LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115. DOI: 10.1016/j.ijimpeng.2015.01.007.
    [9] LI Y, LI Y H, WEN Y Q. Radial distribution of fragment velocity of asymmetrically initiated warhead [J]. International Journal of Impact Engineering, 2017, 99: 39–47. DOI: 10.1016/j.ijimpeng.2016.09.007.
    [10] LI Y, LI X G, XIONG S H, et al. New formula for fragment velocity in the aiming direction of an asymmetrically initiated warhead [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(5): 496–505. DOI: 10.1002/prep.201800003.
    [11] LI Y, XIONG S H, LI X G, et al. Mechanism of velocity enhancement of asymmetrically two lines initiated warhead [J]. International Journal of Impact Engineering, 2018, 122: 161–174. DOI: 10.1016/j.ijimpeng.2018.07.011.
    [12] LI Y, CHENG L, WEN Y Q. Fragment velocity formula for reverse detonation driving with opposite initiation [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12): 1931–1936. DOI: 10.1002/prep.202000162.
    [13] LI Y, LI X G, WEN Y Q, et al. Detonation driving rules for cylindrical casings under asymmetrical multipoint initiations [J]. Defence Technology, 2023, 23: 35–49. DOI: 10.1016/j.dt.2022.10.001.
    [14] AN X Y, DONG Y X, LIU J Y, et al. Fragment velocity characteristics of warheads with a hollow core under asymmetrical initiation [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(8): 1049–1058. DOI: 10.1002/prep.201800382.
    [15] GUO Z W, HUANG G Y, ZHU W, et al. Mechanism and suppression of the effect of axial rarefaction waves on the eccentric initiation effect [J]. International Journal of Impact Engineering, 2019, 124: 37–47. DOI: 10.1016/j.ijimpeng.2018.10.009.
    [16] GUO Z W, HUANG G Y, ZHU W, et al. The fragmentation of D-shaped casing filled with explosive under eccentric initiation [J]. Defence Technology, 2018, 14(5): 417–421. DOI: 10.1016/j.dt.2018.06.006.
    [17] GUO Z W, HUANG G Y, ZHU W, et al. Fragment velocity distribution of D-shaped casing with multiple fragment layers [J]. International Journal of Impact Engineering, 2019, 131: 85–93. DOI: 10.1016/j.ijimpeng.2019.04.027.
    [18] GUO Z W, HUANG G Y, LIU H, et al. Fragment velocity distribution of the bottom part of D-shaped casings under eccentric initiation [J]. International Journal of Impact Engineering, 2020, 144: 103649. DOI: 10.1016/j.ijimpeng.2020.103649.
    [19] GUO Z W, HUANG G Y, LIU H, et al. Effects of shell thickness on the fragment velocity distribution of D-shaped casing filled with explosive [J]. Journal of Physics: Conference Series, 2021, 1721(1): 012018. DOI: 10.1088/1742-6596/1721/1/012018.
    [20] DING L L, LI Z D, LIANG M Z, et al. The dispersion rule of fragments about the asymmetric shell [J]. Shock and Vibration, 2017, 2017: 9810978. DOI: 10.1155/2017/9810978.
    [21] DING L L, LI Z D, LU F Y, et al. Rapid assessment of the spatial distribution of fragments about the D-shaped structure [J]. Advances in Mechanical Engineering, 2018, 10(5): 1–16. DOI: 10.1177/1687814018777594.
    [22] DING L L, LI Z D, LU F Y, et al. Research into the energy output of asymmetric cylindrical structure under internal explosion loading [J]. Energies, 2018, 11(4): 967. DOI: 10.3390/en11040967.
    [23] LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14. DOI: 10.1177/1687814016687966.
    [24] 李元, 赵倩, 熊诗辉, 等. 一种异面棱柱战斗部威力特性的数值模拟 [J]. 含能材料, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143.

    LI Y, ZHAO Q, XIONG S H, et al. Numerical modeling on lethality of a faceted prismatic warhead [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143.
    [25] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.

    LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.
    [26] 武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验 [J]. 火炸药学报, 2016, 39(3): 89–94. DOI: 10.14077/j.issn.1007-7812.2016.03.018.

    WU J B, GOU R J, ZHENG J J, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead [J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 89–94. DOI: 10.14077/j.issn.1007-7812.2016.03.018.
    [27] DENG X M, WU H J, YANG X, et al. Preformed fragment velocity distribution of elliptical cross-section projectile [J]. Latin American Journal of Solids and Structures, 2022, 19(1): e423. DOI: 10.1590/1679-78256835.
    [28] 邓宇轩, 张先锋, 冯可华, 等. 椭圆截面战斗部爆炸驱动破片作用过程的数值模拟 [J]. 高压物理学报, 2022, 36(2): 025104. DOI: 10.11858/gywlxb.20210856.

    DENG Y X, ZHANG X F, FENG K H, et al. Numerical simulation of fragmentation process driven by explosion in elliptical cross-section warhead [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. DOI: 10.11858/gywlxb.20210856.
    [29] 邓宇轩, 张先锋, 刘闯, 等. 椭圆截面战斗部爆轰驱动壳体的断裂及毁伤特性 [J]. 爆炸与冲击, 2023, 43(9): 091412. DOI: 10.11883/bzycj-2023-0135.

    DENG Y X, ZHANG X F, LIU C, et al. Casing fracture and damage characteristics of an elliptical cross-section warhead under explosive loading [J]. Explosion and Shock Waves, 2023, 43(9): 091412. DOI: 10.11883/bzycj-2023-0135.
    [30] 姜斌, 沈波, 薛再清, 等. 椭圆形截面杀伤战斗部破片初速分布特性研究 [J]. 兵器装备工程学报, 2022, 43(3): 149–155. DOI: 10.11809/bqzbgcxb2022.03.023.

    JIANG B, SHEN B, XUE Z Q, et al. Study on distribution characteristics of initial velocity of elliptic killing warhead fragment [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 149–155. DOI: 10.11809/bqzbgcxb2022.03.023.
    [31] DYNAMICS C. Release 14. 0 documentation for ANSYS AUTODYN [Z]. 2011.
    [32] 黄广炎, 刘沛清, 冯顺山. 基于战斗部微圆柱分析的破片飞散特性研究 [J]. 兵工学报, 2010, 31(S1): 215–218.

    HUANG G Y, LIU P Q, FENG S S. Research on dispersion characteristic of fragment based on micro-column analyses for warhead [J]. Acta Armamentarii, 2010, 31(S1): 215–218.
    [33] 高月光, 冯顺山, 刘云辉, 等. 不同端盖厚度的圆柱形装药壳体破片初速分布 [J]. 兵工学报, 2022, 43(7): 1527–1536. DOI: 10.12382/bgxb.2021.0443.

    GAO Y G, FENG S S, LIU Y H, et al. Initial velocity distribution of fragments from cylindrical charge shells with different thick end caps [J]. Acta Armamentarii, 2022, 43(7): 1527–1536. DOI: 10.12382/bgxb.2021.0443.
    [34] 李翔宇, 李振铎, 梁民族. D型战斗部破片飞散性及威力场快速计算 [J]. 爆炸与冲击, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420.

    LI X Y, LI Z D, LIANG M Z. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead [J]. Explosion and Shock Waves, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  23
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-03-21

目录

    /

    返回文章
    返回