多胞子弹冲击泡沫夹芯梁的动力学响应分析

张元瑞 朱玉东 王克鸿 周琦 虞吉林 郑志军

张元瑞, 朱玉东, 王克鸿, 周琦, 虞吉林, 郑志军. 多胞子弹冲击泡沫夹芯梁的动力学响应分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0045
引用本文: 张元瑞, 朱玉东, 王克鸿, 周琦, 虞吉林, 郑志军. 多胞子弹冲击泡沫夹芯梁的动力学响应分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0045
ZHANG Yuanrui, ZHU Yudong, WANG Kehong, ZHOU Qi, YU Jilin, ZHENG Zhijun. Dynamic response analysis of cellular projectile impacting foam sandwich beam[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0045
Citation: ZHANG Yuanrui, ZHU Yudong, WANG Kehong, ZHOU Qi, YU Jilin, ZHENG Zhijun. Dynamic response analysis of cellular projectile impacting foam sandwich beam[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0045

多胞子弹冲击泡沫夹芯梁的动力学响应分析

doi: 10.11883/bzycj-2024-0045
基金项目: 国家自然科学基金(11872360)
详细信息
    作者简介:

    张元瑞(1997- ),女,博士,博士后,yrzhang1@ustc.edu.cn

    通讯作者:

    郑志军(1979- ),男,博士,副教授,zjzheng@ustc.edu.cn

  • 中图分类号: O389

Dynamic response analysis of cellular projectile impacting foam sandwich beam

  • 摘要: 为了研究均匀/梯度多胞子弹冲击泡沫夹芯梁的耦合响应过程和多胞子弹对夹芯梁的加载效果,对该冲击过程开展了理论分析、数值模拟和试验研究:通过将泡沫夹芯梁等效为单梁以简化分析,基于多胞子弹的冲击波模型和泡沫夹芯梁的等效单梁响应模型,构建了多胞子弹冲击泡沫夹芯梁的耦合分析模型,给出了冲击过程中各响应阶段的控制方程,并结合龙格-库塔方法对方程进行了数值求解;基于三维Voronoi技术,开展了均匀/梯度多胞子弹冲击泡沫夹芯梁的细观有限元模拟;在多胞子弹的冲击测试平台上进行了试验研究,结合高速摄影技术获取了多胞子弹和泡沫夹芯梁的速度响应。结果表明:耦合分析模型可以准确地预测多胞子弹和泡沫夹芯梁的速度历程曲线以及多胞子弹产生的冲击压强;在初始动量相同但密度分布或初速度不同的多胞子弹冲击下,同一构型的泡沫夹芯梁展现出不同的力学响应,这说明多胞子弹的加载不能简单地等效为脉冲加载,多胞子弹与夹芯梁之间的耦合效应不可忽略;相较于均匀多胞子弹,梯度多胞子弹的冲击压力波形更加尖锐,在其衰减过程中展现出更强的非线性特征。
  • 图  1  梯度多胞子弹冲击泡沫夹芯梁的示意图

    Figure  1.  Schematic diagram of a graded cellular projectile impacting a foam sandwich beam

    图  2  夹芯梁的等效单梁的速度场在冲击过程中的5个相

    Figure  2.  Five phases of the velocity field of the equivalent monolithic beam for the sandwich beam during the impact process

    图  3  泡沫铝的准静态单轴压缩应力-应变曲线和和面/背梁材料6061-T6铝的准静态拉伸应力-应变曲线

    Figure  3.  The quasi-static uniaxial compression stress-strain curves of aluminum foam and the quasi-static uniaxial tensile stress-strain curve of 6061-T6 aluminum

    图  4  均匀多胞子弹试件以及夹芯梁试件

    Figure  4.  Test specimens of uniform cellular projectiles and foam sandwich beam

    图  5  多胞子弹冲击泡沫铝夹芯梁的测试平台

    Figure  5.  A test platform for cellular projectile impacting a clamped foam sandwich beam

    图  6  高速摄影图像的数据处理方法

    Figure  6.  Data processing method of high-speed photography images

    图  7  多胞子弹的有限元模型及夹芯梁芯层网格敏感性分析

    Figure  7.  The finite element models of different cellular projectiles and grid sensitivity analysis of sandwich beam core

    图  8  有限元模拟中多胞子弹冲击泡沫铝夹芯梁的变形过程

    Figure  8.  The deformation process of the foam sandwich beam under the impact of the cellular projectile in the simulation

    图  9  UCP-2冲击泡沫夹芯梁的速度历程曲线

    Figure  9.  The history of the mid-span velocity of the foam sandwich beam impacted by projectile UCP-2

    图  10  UCP-2冲击下泡沫夹芯梁的跨中挠度和承载历程曲线

    Figure  10.  The history of the mid-span deflection and the impact pressure of the foam sandwich beam impacted by projectile UCP-2

    图  11  等初始动量的均匀/梯度多胞子弹冲击下泡沫夹芯梁的跨中速度、跨中挠度和承载历程曲线

    Figure  11.  The mid-span velocity, deflection, and impact pressure of foam sandwich beam impacted by uniform/graded cellular projectiles with the same initial momentum

    图  12  UCP-30和UCP-60冲击固支泡沫铝夹芯梁的变形过程

    Figure  12.  The deformation process of the clamped foam sandwich beams impacted by projectiles UCP-30 and UCP-60

    图  13  UCP-30和UCP-60冲击下泡沫夹芯梁的速度响应

    Figure  13.  The velocity response of the foam sandwich beams impacted by projectiles UCP-30 and UCP-60

    图  14  UCP-30和UCP-60子弹冲击下泡沫夹芯梁的最终变形

    Figure  14.  The final deformation configurations of the foam sandwich beams impacted by projectiles UCP-30 and UCP-60

    表  1  有限元模拟和实验中多胞子弹的参数

    Table  1.   Parameters of cellular projectiles in finite element simulations and experimental tests

    方法 子弹编号 ρ0 ρe l0/mm v0/(m·s−1) I/(N·s)
    有限元模拟 UCP-1 0.15 0.15 60 100 2.98
    UCP-2 0.15 0.15 30 200 2.98
    GCP-1 0.20 0.10 30 200 2.98
    实验测试 UCP-30 0.11 0.11 30 215 2.00
    UCP-60 0.11 0.11 60 104 1.94
     注:I为冲量.
    下载: 导出CSV
  • [1] GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541.
    [2] GAN E C J, REMENNIKOV A, RITZEL D, et al. Approximating a far-field blast environment in an advanced blast simulator for explosion resistance testing [J]. International Journal of Protective Structures, 2020, 11(4): 468–493. DOI: 10.1177/2041419620911133.
    [3] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7.
    [4] GAN E C J, REMENNIKOV A, RITZEL D. Investigation of trees as natural protective barriers using simulated blast environment [J]. International Journal of Impact Engineering, 2021, 158: 104004. DOI: 10.1016/j.ijimpeng.2021.104004.
    [5] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. DOI: 10.1016/S0734-743X(97)00016-X.
    [6] RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/j.ijimpeng.2004.07.012.
    [7] RADFORD D D, FLECK N A, DESHPANDE V S. The response of clamped sandwich beams subjected to shock loading [J]. International Journal of Impact Engineering, 2006, 32(6): 968–987. DOI: 10.1016/j.ijimpeng.2004.08.007.
    [8] RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading [J]. International Journal of Solids and Structures, 2006, 43(6): 1746–1763. DOI: 10.1016/j.ijsolstr.2005.06.079.
    [9] TAGARIELLI V L, DESHPANDE V S, FLECK N A. The dynamic response of composite sandwich beams to transverse impact [J]. International Journal of Solids and Structures, 2007, 44(7/8): 2442–2457. DOI: 10.1016/j.ijsolstr.2006.07.015.
    [10] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
    [11] JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B: Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024.
    [12] JING L, WANG Z H, NING J G, et al. The mechanical response of metallic sandwich beams under foam projectile impact loading [J]. Latin American Journal of Solids and Structures, 2011, 8(1): 107–120. DOI: 10.1590/S1679-78252011000100006.
    [13] JING L, WANG Z H, ZHAO L M. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites Part B: Engineering, 2016, 94: 52–63. DOI: 10.1016/j.compositesb.2016.03.035.
    [14] JING L, WANG Z H, ZHAO L M. Response of metallic cylindrical sandwich shells subjected to projectile impact: experimental investigations [J]. Composite Structures, 2014, 107: 36–47. DOI: 10.1016/j.compstruct.2013.07.011.
    [15] LI X, LI S Q, WANG Z H, et al. Response of aluminum corrugated sandwich panels under foam projectile impact: experiment and numerical simulation [J]. Journal of Sandwich Structures & Materials, 2017, 19(5): 595–615. DOI: 10.1177/1099636216630503.
    [16] LI X, ZHANG P W, LI S Q, et al. Dynamic response of aluminum honeycomb sandwich panels under foam projectile impact [J]. Mechanics of Advanced Materials and Structures, 2018, 25(8): 637–646. DOI: 10.1080/15376494.2017.1308595.
    [17] ZHAO Z, JING L. The response of clamped sandwich panels with layered-gradient aluminum foam cores to foam projectile impact [J]. Mechanics of Advanced Materials and Structures, 2020, 27(9): 744–753. DOI: 10.1080/15376494.2018.1495790.
    [18] 魏建辉, 李旭, 黄威, 等. 高速冲击载荷下梯度金属泡沫夹芯梁的动态响应与失效 [J]. 爆炸与冲击, 2023, 43(5): 053301. DOI: 10.11883/bzycj-2022-0156.

    WEI J H, LI X, HUANG W, et al. Dynamic response and failure of sandwich beams with graded metal foam core under high-velocity impact [J]. Explosion and Shock Waves, 2023, 43(5): 053301. DOI: 10.11883/bzycj-2022-0156.
    [19] ZHANG J X, ZHU Y Q, LI K K, et al. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations [J]. International Journal of Impact Engineering, 2022, 164: 104201. DOI: 10.1016/j.ijimpeng.2022.104201.
    [20] XIAO D B, CHEN X Q, LI Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading: experiments and finite element analysis [J]. Materials & Design, 2019, 176: 107840. DOI: 10.1016/j.matdes.2019.107840.
    [21] LI Y, CHEN Z H, XIAO D B, et al. The dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading [J]. International Journal of Impact Engineering, 2020, 137: 103442. DOI: 10.1016/j.ijimpeng.2019.103442.
    [22] CHEN Z H, LIU L W, GAO S L, et al. Dynamic response of sandwich beam with star-shaped reentrant honeycomb core subjected to local impulsive loading [J]. Thin-Walled Structures, 2021, 161: 107420. DOI: 10.1016/j.tws.2020.107420.
    [23] YU R P, WANG X, ZHANG Q C, et al. Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact [J]. Composites Part B: Engineering, 2020, 197: 108135. DOI: 10.1016/j.compositesb.2020.108135.
    [24] WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533.
    [25] 张元瑞, 朱玉东, 郑志军, 等. 泡沫子弹冲击固支单梁的耦合分析模型 [J]. 力学学报, 2022, 54(8): 2161–2172. DOI: 10.6052/0459-1879-22-223.

    ZHANG Y R, ZHU Y D, ZHENG Z J, et al. A coupling analysis model of clamped monolithic beam impacted by foam projectiles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161–2172. DOI: 10.6052/0459-1879-22-223.
    [26] RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259. DOI: 10.1016/j.ijsolstr.2005.07.006.
    [27] WANG Z H, JING L, NING J G, et al. The structural response of clamped sandwich beams subjected to impact loading [J]. Composite Structures, 2011, 93(4): 1300–1308. DOI: 10.1016/j.compstruct.2010.05.011.
    [28] QIU X, DESHPANDE V S, FLECK N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1015–1046. DOI: 10.1016/j.jmps.2004.12.004.
    [29] YUE Z S, WANG X, HE C, et al. Elevated shock resistance of all-metallic sandwich beams with honeycomb-supported corrugated cores [J]. Composites Part B: Engineering, 2022, 242: 110102. DOI: 10.1016/j.compositesb.2022.110102.
    [30] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013.
    [31] YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: A design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010.
    [32] LI Q M, JONES N. Shear and adiabatic shear failures in an impulsively loaded fully clamped beam [J]. International Journal of Impact Engineering, 1999, 22(6): 589–607. DOI: 10.1016/S0734-743X(99)00013-5.
    [33] ZHANG Y R, ZHU Y D, CHANG B X, et al. Blast-loading simulators: Multiscale design of graded cellular projectiles considering projectile-beam coupling effect [J]. Journal of the Mechanics and Physics of Solids, 2023, 180: 105402. DOI: 10.1016/j.jmps.2023.105402.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  14
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 修回日期:  2024-04-05
  • 网络出版日期:  2024-04-07

目录

    /

    返回文章
    返回