装药过载环境力等效模拟实验技术研究

杜烨 周炜智 黄求安 李强

杜烨, 周炜智, 黄求安, 李强. 装药过载环境力等效模拟实验技术研究[J]. 爆炸与冲击, 2024, 44(7): 074101. doi: 10.11883/bzycj-2024-0048
引用本文: 杜烨, 周炜智, 黄求安, 李强. 装药过载环境力等效模拟实验技术研究[J]. 爆炸与冲击, 2024, 44(7): 074101. doi: 10.11883/bzycj-2024-0048
DU Ye, ZHOU Weizhi, HUANG Qiuan, LI Qiang. Research on an equivalent simulation experimental technology for overloading environmental forces of charge[J]. Explosion And Shock Waves, 2024, 44(7): 074101. doi: 10.11883/bzycj-2024-0048
Citation: DU Ye, ZHOU Weizhi, HUANG Qiuan, LI Qiang. Research on an equivalent simulation experimental technology for overloading environmental forces of charge[J]. Explosion And Shock Waves, 2024, 44(7): 074101. doi: 10.11883/bzycj-2024-0048

装药过载环境力等效模拟实验技术研究

doi: 10.11883/bzycj-2024-0048
基金项目: 军科委基础加强技术领域基金(2021-JCJQ-JJ-1195,2023-JCJQ-JJ-0264);山西省自然科学基金面上项目(20210302124196,202203021211097)
详细信息
    作者简介:

    杜 烨(1979- ),女,博士,副教授,29872858@qq.com

    通讯作者:

    李 强(1985- ),男,博士,副教授,liqiang1170@126.com

  • 中图分类号: O389; TQ560.1

Research on an equivalent simulation experimental technology for overloading environmental forces of charge

  • 摘要: 为解决装药安全可靠性能实验成本高、强过载环境测试难度大等瓶颈问题,以等效模拟弹体侵彻钢板时内部装药过载环境力为目标,基于数值模拟方法,设计了装药过载环境力等效模拟实验装置,并开展了等效模拟实验,突破了同时满足加载压力大于1 GPa和脉冲宽度大于100 μs的技术难点。结果表明,弹丸侵彻钢板时装药受到的过载为正弦波单脉冲。在装置中采用波形调整器不仅能够调控加载到待测药表面的波形,还能对压力的衰减产生大幅影响。随着波形调整器厚度的增大,加载在待测药表面的压力逐渐减小,脉冲宽度显著增大;随着飞片厚度增大,飞片获得的驱动速度逐渐减小,加载在待测药表面的压力明显减小,脉冲宽度变化不明显。装药过载环境力模拟装置形成的脉冲特征值与弹丸侵彻钢靶过程的数值模拟结果对比,超压峰值误差最高为5.71%,脉宽误差最高为14.8%,均低于15%,验证了用该装置模拟弹体侵彻钢靶时装药加载状态的等效性。
  • 图  1  装药结构模型

    Figure  1.  Charge structure model

    图  2  弹丸网格划分

    Figure  2.  Mesh division of a projectile

    图  3  弹丸以1000 m/s的速度侵彻靶板时载荷在弹体中的传播云图

    Figure  3.  Cloud maps of load propagation in the projectile body when the projectile penetrates the target plate at a velocity of 1000 m/s

    图  4  弹丸以不同的速度侵彻时装药的加载波形

    Figure  4.  Waveforms of loads on the charges at different penetration velocities of the projectiles

    图  5  装药冲击过载测试装置

    Figure  5.  The device for testing the impact overload on the charge

    图  6  压力测试系统

    Figure  6.  Pressure testing system

    图  7  实验现场布置

    Figure  7.  Experimental site layout

    图  8  典型工况实验后场景

    Figure  8.  Scenes after experiment under typical working conditions

    图  9  相同工况下2种波形调整器加载信号对比

    Figure  9.  Comparison of loading signals between two waveform adjusters under the same condition

    图  10  A型波形调整器同为13 mm,厚度飞片不同加载条件下的压力-时间曲线

    Figure  10.  Loading pressure-time curves under impact of flyers with different thicnesses when A-type waveform adjusters are all 13 mm in thickness

    图  11  A型波形调整器厚度不同,片厚度同为3.5 mm加载条件下的压力-时间曲线

    Figure  11.  Loading pressure-time curves under impact of the flyers with 3.5 mm all in thickness when the A-type waveform adjusters are different in thickness

    表  1  弹丸以不同的速度侵彻时装药试样加载数据

    Table  1.   Data of loads on the charge samples at different penetration velocities of the projectiles

    侵彻速度/(m∙s−1) 压力峰值/GPa 脉冲宽度/μs
    500 0.66 103
    800 0.85 103
    1000 1.05 101
    1200 1.23 98
    1500 1.51 96
    下载: 导出CSV

    表  2  实验方案及测试数据

    Table  2.   Experimental plan and test data

    实验编号 df/mm 波形调整器材料 d/mm pp,e/GPa $ \dfrac{{{p_{{\text{p,e}}}} - {p_{{\text{p,s}}}}}}{{{p_{{\text{p,e}}}}}} \times 100{\text{%}} $ τe/μs $ \dfrac{{{\tau _{\text{s}}} - {\tau _{\text{e}}}}}{{{\tau _{\text{e}}}}} \times 100{\text{%}} $
    1 2.0 聚乙烯基(A) 13 1.27 −3.2 97 11.6
    2 3.5 聚乙烯基(A) 13 1.02 2.9 102 14.8
    3 5.0 聚乙烯基(A) 13 0.83 2.4 111 1.0
    4 7.5 聚乙烯基(A) 13 0.70 −5.7 112 −1.9
    5 2.0 橡胶基(B) 13 1.17 −1.7 134 −10.4
    6 3.5 橡胶基(B) 13 0.94 −4.3 110 −12.7
    7 5.0 橡胶基(B) 13 0.77 −9.1 122 −3.3
    8 7.5 橡胶基(B) 13 0.55 12.7 128 −2.3
    9 3.5 聚乙烯基(A) 5 1.09 −3.7 87 5.7
    10 3.5 聚乙烯基(A) 25 0.87 5.7 102 −2.9
    11 3.5 聚乙烯基(A) 35 0.77 −10.4 126 1.6
    下载: 导出CSV
  • [1] 王宁. 弹体侵彻素混凝土过程中装药动态响应机理研究 [D]. 南京: 南京理工大学, 2017: 27–56. DOI: 10.7666/d.Y3548125.

    WANG N. Dynamic response of charges in projectiles during penetrating into concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2017: 27–56. DOI: 10.7666/d.Y3548125.
    [2] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.
    [3] AYDEMIR E, ULAS A, SERIN N. Thermal decomposition and ignition of PBXN-110 plastic-bonded explosive [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(3): 308–315. DOI: 10.1002/prep.201100011.
    [4] 刘卫, 张蕊, 沈瑞琪, 等. 高过载条件下火工品装药的响应特性 [J]. 兵工学报, 2016, 37(S2): 191–196.

    LIU W, ZHANG R, SHEN R Q, et al. Response characteristics of explosive charge in initiator under high-g loading [J]. Acta Armamentarii, 2016, 37(S2): 191–196.
    [5] 高昌印. 过载性能试验台设计及微型涡喷抗过载性能研究 [D]. 南京: 南京理工大学, 2016: 34–37. DOI: 10.7666/d.Y3198350.

    GAO C Y. Design of overload performance test bench and study on anti-overload performance of micro-turbine [D]. Nanjing: Nanjing University of Science and Technology, 2016: 34–37. DOI: 10.7666/d.Y3198350.
    [6] 李创新, 沈瑞琪, 刘卫, 等. 高加速度冲击过载下桥丝式电雷管的损伤特性研究 [J]. 火工品, 2012(3): 1–4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.

    LI C X, SHEN R Q, LIU W, et al. Research on damage characteristics of bridgewire electric detonator under high acceleration loading [J]. Initiators and Pyrotechnics, 2012(3): 1–4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.
    [7] 王艳华. 火工品过载试验研究及数值模拟仿真 [D]. 太原: 中北大学, 2010: 20–31. DOI: 10.7666/d.D315111.

    WANG Y H. The study of the initiator overloading on experiment and the numerical simulation analyses [D]. Taiyuan: North University of China, 2010: 20–31. DOI: 10.7666/d.D315111.
    [8] 邓琼, 李玉龙, 索涛, 等. 火工品高过载动态力学性能测试方法研究 [J]. 火工品, 2007(1): 28–31. DOI: 10.3969/j.issn.1003-1480.2007.01.009.

    DENG Q, LI Y L, SUO T, et al. Test method on dynamic mechanical behavior of initiating explosive device under high acceleration [J]. Initiators and Pyrotechnics, 2007(1): 28–31. DOI: 10.3969/j.issn.1003-1480.2007.01.009.
    [9] 徐鹏, 祖静, 范锦彪. 高g值加速度冲击试验技术研究 [J]. 振动与冲击, 2011, 30(4): 241–243, 253. DOI: 10.13465/j.cnki.jvs.2011.04.009.

    XU P, ZU J, FAN J B. Acceleration shock test technology with higher values of g [J]. Journal of Vibration and Shock, 2011, 30(4): 241–243, 253. DOI: 10.13465/j.cnki.jvs.2011.04.009.
    [10] 周广宇, 胡时胜. 高g值加速度发生器中的波形整形技术 [J]. 爆炸与冲击, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.

    ZHOU G Y, HU S S. Pulse-shaping techniques of high-g-value acceleration generators [J]. Explosion and Shock Waves, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.
    [11] 赵欣, 丁继锋, 韩增尧, 等. 航天器火工冲击模拟试验及响应预示方法研究综述 [J]. 爆炸与冲击, 2016, 36(2): 259–268. DOI: 10.11883/1001-1455(2016)02-0259-10.

    ZHAO X, DING J F, HAN Z Y, et al. Review of pyroshock simulation and response prediction methods in spacecraft [J]. Explosion and Shock Waves, 2016, 36(2): 259–268. DOI: 10.11883/1001-1455(2016)02-0259-10.
    [12] 门士滢. 高过载宽脉冲空气击锤设计及试验技术研究 [D]. 南京: 南京理工大学, 2014: 14–21. DOI: 10.7666/d.Y2520469.
    [13] 何小斌. 火工品过载特性落球碰撞模拟试验研究 [D]. 南京: 南京理工大学, 2010: 11–16. DOI: 10.7666/d.Y1697799.

    HE X B. Research on overload characteristics of initiating device by falling ball collision simulation tests [D]. Nanjing: Nanjing University of Science and Technology, 2010: 11–16. DOI: 10.7666/d.Y1697799.
    [14] 满晓飞, 门士滢, 马少杰, 等. 空气击锤装置模拟硬目标侵彻实验方法 [J]. 探测与控制学报, 2016, 38(3): 90–93.

    MAN X F, MEN S Y, MA S J, et al. Using air hammer device simulate hard target penetration process [J]. Journal of Detection and Control, 2016, 38(3): 90–93.
    [15] 陈健. 空气炮力学过载模拟试验波形展宽研究 [D]. 南京: 南京理工大学, 2018: 11–20. DOI: 10.27241/d.cnki.gnjgu.2019.001187.

    CHEN J. Research on waveform-broadening of mechanical overload simulation test on air gun [D]. Nanjing: Nanjing University of Science and Technology, 2018: 11–20. DOI: 10.27241/d.cnki.gnjgu.2019.001187.
    [16] 许志峰, 屈可朋. 装药发射安全性模拟加载实验方法研究 [J]. 火工品, 2015(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.

    XU Z F, QU K P. Study on experimental method of simulation loading for launch safety of charge [J]. Initiators and Pyrotechnics, 2015(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.
    [17] 刘计划, 赵宏立, 何昌辉, 等. 冲击载荷作用下典型发射药的弹性模量分析方法 [J]. 兵工学报, 2021, 42(2): 289–296. DOI: 10.3969/j.issn.1000-1093.2021.02.007.

    LIU J H, ZHAO H L, HE C H, et al. Analysis method for elastic modulus of typical gun-propellant under impact loading [J]. Acta Armamentarii, 2021, 42(2): 289–296. DOI: 10.3969/j.issn.1000-1093.2021.02.007.
    [18] STARKENBERG J J, MCFADDEN D L, LYMAN O R. Cavity collapse ignition of composition B in the launch environment: BRL-TR-2714 [R]. Adelphi, USA: US Army Ballistic Research Laboratory, 1986.
    [19] 芮筱亭, 冯宾宾, 王燕, 等. 发射装药发射安全性评定方法研究 [J]. 兵工学报, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.

    RUI X T, FENG B B, WANG Y, et al. Research on evaluation method for launch safety of propellant charge [J]. Acta Armamentarii, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.
    [20] 屈可朋, 肖玮, 李亮亮. 炸药装药侵彻安全性模拟实验方法研究 [J]. 火工品, 2017(1): 46–48. DOI: 10.3969/j.issn.1003-1480.2017.01.013.

    QU K P, XIAO W, LI L L. Study on simulating experimental method for the safety of explosive charge during penetration [J]. Initiators and Pyrotechnics, 2017(1): 46–48. DOI: 10.3969/j.issn.1003-1480.2017.01.013.
    [21] KIM B S, LEE J. Development of impact test device for pyroshock simulation using impact analysis [J]. Aerospace, 2022, 9(8): 407. DOI: 10.3390/aerospace9080407.
    [22] 周霖, 倪磊, 李东伟, 等. 炸药抗过载性能试验方法 [J]. 兵工学报, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.

    ZHOU L, NI L, LI D W, et al. Test method for anti-overload performance of explosives [J]. Acta Armamentarii, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.
    [23] SUN M, LI J C, ZHANG H Y, et al. Effect of relative density and grain size on the internal flow field during the ballistic penetration of sand [J]. International Journal of Impact Engineering, 2024, 185: 104859. DOI: 10.1016/j.ijimpeng.2023.104859.
    [24] 王励自. 聚能装药对岩土介质侵彻机理研究与分析 [D]. 成都: 西南交通大学, 2002: 27–31. DOI: 10.7666/d.y505487.

    WANG L Z. Study and analysis on penetration of shaped charge into rock and soil media [D]. Chengdu: Southwest Jiaotong University, 2002: 27–31. DOI: 10.7666/d.y505487.
    [25] 李淑睿, 段卓平, 白志玲, 等. 2, 4-二硝基苯甲醚基熔铸含铝炸药冲击起爆特性 [J]. 兵工学报, 2022, 43(6): 1288–1294. DOI: 10.12382/bgxb.2021.0354.

    LI S R, DUAN Z P, BAI Z L, et al. Shock initiation characteristics of DNAN-based aluminized melt-cast explosive [J]. Acta Armamentarii, 2022, 43(6): 1288–1294. DOI: 10.12382/bgxb.2021.0354.
    [26] 覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件 [J]. 高压物理学报, 2018, 32(3): 035202. DOI: 10.11858/gywlxb.20170656.

    QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. DOI: 10.11858/gywlxb.20170656.
    [27] 李金河, 曾代朋, 傅华, 等. 一种研究炸药反应阈值的新方法 [J]. 实验力学, 2015, 30(3): 363–366. DOI: 10.7520/1001-4888-14-271.

    LI J H, ZENG D P, FU H, et al. On a new method to study the reaction threshold of explosive [J]. Journal of Experimental Mechanics, 2015, 30(3): 363–366. DOI: 10.7520/1001-4888-14-271.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  29
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-03-28
  • 网络出版日期:  2024-03-29
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回