爆炸作用下建筑结构高效毁伤评估方法

吕晋贤 吴昊 卢永刚 陈德

吕晋贤, 吴昊, 卢永刚, 陈德. 爆炸作用下建筑结构高效毁伤评估方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0053
引用本文: 吕晋贤, 吴昊, 卢永刚, 陈德. 爆炸作用下建筑结构高效毁伤评估方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0053
LYU Jinxian, WU Hao, LU Yonggang, CHEN De. High-efficiency assessment method of damage to building structures under explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0053
Citation: LYU Jinxian, WU Hao, LU Yonggang, CHEN De. High-efficiency assessment method of damage to building structures under explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0053

爆炸作用下建筑结构高效毁伤评估方法

doi: 10.11883/bzycj-2024-0053
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    吕晋贤(1999- ),男,博士研究生,2111022@tongji.edu.cn

    通讯作者:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

  • 中图分类号: O389; TU375; TU318

High-efficiency assessment method of damage to building structures under explosions

  • 摘要: 为综合评估战后建筑结构的毁伤等级,针对爆炸作用下典型地面建筑,即含填充墙钢筋混凝土(reinforced concrete,RC)框架结构,提出了损伤破坏和倒塌的高精度数值仿真分析方法,并通过RC结构爆炸试验、倒塌事故和砌体墙爆炸试验进行了充分验证;其次,开展了典型3层原型RC框架结构在不同爆炸当量(25~200 kg TNT)下的内爆炸数值仿真,定量分析了爆炸冲击波在建筑结构内部的传播、结构损伤破坏和墙体飞散等。爆炸作用下建筑结构的高效毁伤评估流程为:结合镜像爆源和非线性叠加原理确定内爆炸荷载,基于等效单自由度方法评估梁、板、柱及墙体构件的毁伤等级,引入构件重要性系数加权确定房间毁伤等级,考虑房间功能及位置重要性评估整体结构的毁伤等级。高精度数值仿真分析与毁伤评估方法计算的典型RC框架结构的整体毁伤等级一致,即在25、100和200 kg TNT爆炸下RC结构分别呈现轻度、中度和重度毁伤,毁伤评估方法可缩短99%以上的计算耗时,兼具可靠性与时效性。
  • 图  1  建筑结构混合单元建模方法

    Figure  1.  Hybrid modeling approach of building structures

    图  2  砌体墙简化微观建模方法

    Figure  2.  Simplified micro-model for masonry walls

    图  3  1/4缩尺2层RC框架爆炸试验及其数值仿真结果

    Figure  3.  Explosion test of 1/4-scale 2-story RC frame and its simulation results

    图  4  Murrah联邦大楼爆炸倒塌事故的数值模拟

    Figure  4.  Numerical simulation of blast-induced collapse incident of Murrah Federal Building

    图  5  砌体墙野外爆炸试验及其数值仿真结果

    Figure  5.  Field explosion test of masonry walls and its simulation results

    图  6  砌体墙激波管爆炸试验及其数值仿真结果

    Figure  6.  Shock tube test of masonry walls and its simulation results

    图  7  典型3层含填充墙RC框架结构

    Figure  7.  Typical 3-story masonry-infilled RC frame structure

    图  8  100 kg TNT爆炸工况下冲击波的传播过程以及框架结构的损伤演化过程

    Figure  8.  Propagation of blast waves and damage evolution of RC frame structure under explosion of 100 kg TNT

    图  9  爆炸后RC框架结构的最终损伤云图

    Figure  9.  Post-blast damage contours of RC frame structures

    图  10  镜像爆源分布及冲击波传播

    Figure  10.  Distribution of mirror explosion sources and blast wave propagation

    图  11  密闭结构内爆炸试验中壁面测点的反射超压时程曲线

    Figure  11.  Reflected overpressure-time histories on side walls in internal explosion test of closed structure

    图  12  毁伤评估流程

    Figure  12.  Structural damage assessment procedure

    图  13  RC框架结构内各房间的毁伤系数

    Figure  13.  Damage factors of each room in RC frame structure

    图  14  RC框架结构内各房间的毁伤等级

    Figure  14.  Damage degree of each room in RC frame structures

    表  1  建筑构件毁伤等级判据[22, 30]

    Table  1.   Damage criterion of structural members[22, 30]

    构件类型轻度毁伤判据中度毁伤判据重度毁伤判据
    0<xmax/L≤0.0170.017<xmax/L≤0.053xmax/L>0.053
    0<xmax/L≤0.0170.017<xmax/L≤0.053xmax/L>0.053
    0<xmax/L≤0.0090.009<xmax/L≤0.026xmax/L>0.026
    0<xmax/L≤0.0040.004<xmax/L≤0.009xmax/L>0.009
    下载: 导出CSV

    表  2  RC梁跨中最大挠度的试验[13]和计算结果对比

    Table  2.   Comparison between test[13] and calculated maximum deflection at mid-span of RC beams

    工况 装药量/kg 比例距离/(m·kg−1/3) 跨中最大挠度
    试验[13]/mm 计算/mm 误差/%
    B2-1 0.51 0.44 35 32.03 −8.49
    B2-2 0.45 0.50 25 24.19 −3.24
    B2-3 0.36 0.57 9 7.13 −20.80
    B2-4 0.75 0.40 40 44.96 12.40
    下载: 导出CSV

    表  3  砌体墙跨中最大挠度的试验[41]和计算结果对比

    Table  3.   Comparison between test[41] and calculated maximum deflection at mid-span of masonry walls

    工况 装药量/kg 比例距离/(m·kg−1/3) 跨中最大挠度
    试验[41]/mm 计算/mm 误差/%
    W-1 100 3.45 56.6 55.6 1.8
    W-2 150 3.02 79.5 79.2 0.4
    W-3 250 2.54 118.0 114.0 3.4
    下载: 导出CSV

    表  4  构件的重要性系数

    Table  4.   Importance factor of structural members

    构件类型ηR0ηR
    1内部框架梁0.5
    边跨框架梁1
    2内部楼板1
    屋面板2
    2中柱0.5
    边柱1
    角柱2
    填充墙1内部填充墙0.5
    外部填充墙1
    下载: 导出CSV

    表  5  房间的使用功能重要性系数

    Table  5.   Importance factor for usage of rooms

    功能重要性 重要性描述 η1
    重要 房间用于作战指挥或通信,重要人员或设备常驻 2
    常规 房间用于常规办公或住宿,一般人员或设备常驻 1
    次要 房间用于辅助或临时办公 0.5
    下载: 导出CSV

    表  6  25 kg TNT爆炸作用下RC框架结构内2层中心房间的毁伤等级评估

    Table  6.   Damage degree assessment of central room at the 2nd floor of RC frame structure under explosion of 25 kg TNT

    结构构件 pr,max/MPa te/ms xmax/L 构件毁伤等级 d ηR dηR
    柱C13.44.20.0013轻度0.30.50.15
    柱C23.44.20.0013轻度0.30.50.15
    柱C33.44.20.0013轻度0.30.50.15
    柱C43.44.20.0013轻度0.30.50.15
    梁B110.01.70.0092轻度0.30.50.15
    梁B210.01.70.0092轻度0.30.50.15
    梁B34.54.20.0055轻度0.30.50.15
    梁B44.54.20.0055轻度0.30.50.15
    顶板32.81.05.6重度111
    底板32.81.05.6重度111
    墙W117.21.3不收敛重度10.50.5
    墙W217.21.3不收敛重度10.50.5
    墙W34.74.2不收敛重度10.50.5
    墙W44.74.2不收敛重度10.50.5
    总计Dr=5.2/8=0.65(重度)85.2
    下载: 导出CSV

    表  7  毁伤评估方法和高精度数值仿真分析方法的对比

    Table  7.   Comparison between damage assessment method and high-fidelity numerical simulation approach

    爆炸工况 整体结构的毁伤等级 用时
    仿真分析 毁伤评估方法 仿真分析/d 毁伤评估方法/h
    25 kg TNT中心房间爆炸 轻度毁伤 轻度毁伤 7 0.4
    100 kg TNT中心房间爆炸 中度毁伤 中度毁伤 9 0.6
    200 kg TNT中心房间爆炸 重度毁伤 重度毁伤 10 0.7
    下载: 导出CSV
  • [1] 中国小康网. 以色列空袭哈马斯总部大楼最新消息 7年来最大冲突巴以怎么了? [EB/OL]. (2021-05-14)[2024-01-07]. https://news.chinaxiaokang.com/guoji/2021/0514/1169680.html.
    [2] 网易新闻. 拦截失败!导弹2倍音速穿透乌决策中心大楼, 大量西方顾问被埋葬 [EB/OL]. (2023-06-24)[2024-01-07]. https://m.163.com/dy/article/I80UO0BU05563HR5.html.
    [3] 杨亚东, 李向东, 王晓鸣, 等. 钢筋混凝土结构内爆炸相似模型试验研究 [J]. 南京理工大学学报, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.

    YANG Y D, LI X D, WANG X M, et al. Experimental study on similarity model of reinforced concrete structure under internal explosion [J]. Journal of Nanjing University of Science and Technology, 2016, 40(2): 135–141. DOI: 10.14177/j.cnki.32-1397n.2016.40.02.002.
    [4] 胡洋, 朱建芳, 朱锴. 长方体单腔室空腔环境内爆炸效应的实验研究 [J]. 爆炸与冲击, 2016, 36(3): 340–346. DOI: 10.11883/1001-1455(2016)03-0340-07.

    HU Y, ZHU J F, ZHU K. Experimental study on explosion effect in a closed single rectangular cavity [J]. Explosion and Shock Waves, 2016, 36(3): 340–346. DOI: 10.11883/1001-1455(2016)03-0340-07.
    [5] 杨亚东, 李向东, 王晓鸣. 长方体密闭结构内爆炸冲击波传播与叠加分析模型 [J]. 兵工学报, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.

    YANG Y D, LI X D, WANG X M. An analytical model for propagation and superposition of internal explosion shockwaves in closed cuboid structure [J]. Acta Armamentarii, 2016, 37(8): 1449–1455. DOI: 10.3969/j.issn.1000-1093.2016.08.016.
    [6] 柏小娜, 李向东, 杨亚东. 封闭空间内爆炸冲击波超压计算模型及分布特性研究 [J]. 爆破器材, 2015, 44(3): 22–26. DOI: 10.3969/j.issn.1001-8352.2015.03.005.

    BAI X N, LI X D, YANG Y D. Calculation model and the distribution of wave pressure under internal explosion in closed space [J]. Explosive Materials, 2015, 44(3): 22–26. DOI: 10.3969/j.issn.1001-8352.2015.03.005.
    [7] 何翔, 孙桂娟, 任新见, 等. 砖隔墙前爆炸泄漏空气冲击波工程算法 [J]. 科学技术与工程, 2020, 20(6): 2150–2154. DOI: 10.3969/j.issn.1671-1815.2020.06.006.

    HE X, SUN G J, REN X J, et al. Explosion-leakage air shock wave engineering algorithm in front of brick partition wall [J]. Science Technology and Engineering, 2020, 20(6): 2150–2154. DOI: 10.3969/j.issn.1671-1815.2020.06.006.
    [8] 何翔, 孙桂娟, 任新见, 等. 砖隔墙抗爆特性及泄漏空气冲击波效应 [J]. 科学技术与工程, 2020, 20(3): 899–903. DOI: 10.3969/j.issn.1671-1815.2020.03.005.

    HE X, SUN G J, REN X J, et al. Blast-resistance of brick partition wall and air leak shock wave effect [J]. Science Technology and Engineering, 2020, 20(3): 899–903. DOI: 10.3969/j.issn.1671-1815.2020.03.005.
    [9] 曹宇航, 张晓伟, 张庆明. 框架结构建筑物内爆炸冲击波传播规律研究 [J]. 兵器装备工程学报, 2022, 43(3): 189–195. DOI: 10.11809/bqzbgcxb2022.03.029.

    CAO Y H, ZHANG X W, ZHANG Q M. Study on the propagation characteristics of shock wave in frame construction buildings under internal explosion [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 189–195. DOI: 10.11809/bqzbgcxb2022.03.029.
    [10] ANSYS. AUTODYN theory manual [M]. Fort Worth: Century Dynamics, 2005.
    [11] 张传爱, 方秦, 龚自明, 等. 内爆炸条件下爆炸波在建筑物内的传播规律研究 [C]//第22届全国结构工程学术会议论文集第Ⅲ册. 乌鲁木齐: 中国力学学会结构工程专业委员会, 2013: 307−312.

    ZHANG C A, FANG Q, GONG Z M, et al. Analysis on RC frame structure under internal explosion [C]//22nd National Academic Conference on Structural Engineering. Urumqi: Structural Engineering Professional Committee of the Chinese Society of Theoretical and Applied Mechanics, 2013: 307−312.
    [12] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual [M]. Livermore: LSTC, 2018.
    [13] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012.
    [14] 王辉明, 刘飞, 晏麓晖, 等. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应 [J]. 爆炸与冲击, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.

    WANG H M, LIU F, YAN L H, et al. Local damage effects of reinforced concrete beams under contact explosions [J]. Explosion and Shock Waves, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.
    [15] 高超, 宗周红, 伍俊. 爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究 [J]. 土木工程学报, 2013, 46(7): 9–20. DOI: 10.15951/j.tmgcxb.2013.07.012.

    GAO C, ZONG Z H, WU J. Experimental study on progressive collapse failure of RC frame structures under blast loading [J]. China Civil Engineering Journal, 2013, 46(7): 9–20. DOI: 10.15951/j.tmgcxb.2013.07.012.
    [16] WOODSON S C, BAYLOT J T. Structural collapse: quarter-scale model experiments: SL-99-8 [R]. Vicksburg: US Army Corps of Engineers, Engineer Research and Development Center, 1999.
    [17] HEGGELUND S, BREKKEN K, INGIER P, et al. Global response of a three-story building exposed to blast loading [J]. Proceedings, 2018, 2(8): 386. DOI: 10.3390/ICEM18-05211.
    [18] YANKELEVSKY D Z, SCHWARZ S, BROSH B. Full scale field blast tests on reinforced concrete residential buildings-from theory to practice [J]. International Journal of Protective Structures, 2013, 4(4): 565–590. DOI: 10.1260/2041-4196.4.4.565.
    [19] ZAPATA B J. Full-scale testing and numerical modeling of a multistory masonry structure subjected to internal blast loading [D]. Charlotte: University of North Carolina at Charlotte, 2012.
    [20] 曾繁, 肖桂仲, 冯晓伟, 等. 砌体结构长脉宽爆炸荷载损伤等级评估方法 [J]. 爆炸与冲击, 2021, 41(10): 105101. DOI: 10.11883/bzycj-2020-0399.

    ZENG F, XIAO G Z, FENG X W, et al. A damage assessment method for masonry structures subjected to long duration blast loading [J]. Explosion and Shock Waves, 2021, 41(10): 105101. DOI: 10.11883/bzycj-2020-0399.
    [21] 李光宇. 典型坚固目标毁伤效应数字化评估研究 [D]. 北京: 北京理工大学, 2016.

    LI G Y. Research on digital assessment of damage effect of typical solid target [D]. Beijing: Beijing Institute of Technology, 2016.
    [22] 陈旭光. 建筑物在侵爆作用下的累积毁伤评估 [D]. 长沙: 国防科技大学, 2019.

    CHEN X G. Cumulative damage assessment of buildings under penetration and explosion [D]. Changsha: National University of Defense Technology, 2019.
    [23] American Society of Civil Engineers. The Oklahoma city bombing: improving building performance through multi-hazard mitigation [R]. Washington: Federal Emergency Management Agency, Mitigation Directorate, 1996.
    [24] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002.
    [25] 陈德, 吴昊, 徐世林, 等. 单向砌体填充墙激波管试验和动力行为分析 [J]. 爆炸与冲击, 2023, 43(8): 085103. DOI: 10.11883/bzycj-2023-0147.

    CHEN D, WU H, XU S L, et al. Shock tube tests and dynamic behavior analyses on one-way masonry-infilled walls [J]. Explosion and Shock Waves, 2023, 43(8): 085103. DOI: 10.11883/bzycj-2023-0147.
    [26] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2010.
    [27] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804–1826. DOI: 10.1061/(ASCE)0733-9445(1988)114:8(1804).
    [28] 吕晋贤, 吴昊, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议 [J]. 建筑结构学报, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454.

    LYU J X, WU H, FANG Q. Collapse analysis and design recommendations of high-rise frame structures under blast loadings [J]. Journal of Building Structures, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454.
    [29] CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. DOI: 10.1016/j.ijimpeng.2023.104529.
    [30] Unified Facilities Criteria. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington: U. S. Department of Defense, 2008.
    [31] NEEDHAM C E. Blast waves [M]. New York: Springer, 2010.
    [32] 奥尔连科. 爆炸物理学 [M]. 孙承纬, 译. 北京: 科学出版社, 2011.

    ЛПОРЛЕНКО. Explosion physics [M]. SUN C W, trans. Beijing: Science Press, 2011.
    [33] 北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1979.

    The Writing Group of Explosion and Its Effects in the Eighth Department of Beijing Institute of Technology. Explosion and its use [M]. Beijing: National Defense Industry Press, 1979.
    [34] 曹涛, 孙浩, 周游, 等. 近地爆炸冲击波传播特性数值模拟与应用 [J]. 兵器装备工程学报, 2020, 41(12): 187–191. DOI: 10.11809/bqzbgcxb2020.12.035.

    CAO T, SUN H, ZHOU Y, et al. Numerical simulation and application of propagation characteristics of shock wave near ground explosion [J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 187–191. DOI: 10.11809/bqzbgcxb2020.12.035.
    [35] WU C Q, HAO H. Modeling of simultaneous ground shock and air blast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
    [36] International Atomic Energy Agency (IAEA). Safety reports series No 87, Safety aspects of nuclear power plants in human induced external events: assessment of structures [R]. Vienna: International Atomic Energy Agency (IAEA), 2018.
    [37] 东南大学, 天津大学, 同济大学. 混凝土结构(上册): 混凝土结构设计原理 [M]. 7版. 北京: 中国建筑工业出版社, 2020.

    Southeast University, Tianjin University, Tongji University. Concrete structure (volume 1): principle of concrete structure design [M]. 7th ed. Beijing: China Architecture & Building Press, 2020.
    [38] 陈德, 吴昊, 方秦. 爆炸荷载作用下单向砌体填充墙动态响应计算方法 [J]. 建筑结构学报, 2023, 44(10): 197–210. DOI: 10.14006/j.jzjgxb.2022.0130.

    CHEN D, WU H, FANG Q. Dynamic responses calculation method of one-way masonry infill wall under blast loadings [J]. Journal of Building Structures, 2023, 44(10): 197–210. DOI: 10.14006/j.jzjgxb.2022.0130.
    [39] 杨卫忠. 砌体受压本构关系模型 [J]. 建筑结构, 2008, 38(10): 80–82. DOI: 10.19701/j.jzjg.2008.10.027.

    YANG W Z. Constitutive relationship model for masonry materials in compression [J]. Building Structure, 2008, 38(10): 80–82. DOI: 10.19701/j.jzjg.2008.10.027.
    [40] 肖遥, 底欣欣, 黄河. 砖砌体单轴压缩与拉伸应力应变关系 [J]. 世界地震工程, 2019, 35(1): 210–219.

    XIAO Y, DI X X, HUANG H. Stress-strain relationships of brick masonry under uniaxial compression and tension [J]. World Earthquake Engineering, 2019, 35(1): 210–219.
    [41] ABOU ZEID B M K. Experimental and analytical strategies to assess and improve the dynamic response of unreinforced concrete masonry walls under blast loading [D]. Hamilton: McMaster University, 2010.
    [42] 周旭. 导弹毁伤效能试验与评估 [M]. 北京: 国防工业出版社, 2014.

    ZHOU X. Test and evaluation on damage effectiveness of missile [M]. Beijing: National Defense Industry Press, 2014.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  18
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-05-09
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回