反应破片对带壳装药的冲击效应

赵宇峰 段继 冯顺山

赵宇峰, 段继, 冯顺山. 反应破片对带壳装药的冲击效应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0063
引用本文: 赵宇峰, 段继, 冯顺山. 反应破片对带壳装药的冲击效应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0063
ZHAO Yufeng, DUAN Ji, FENG Shunshan. A study of the failure of cased charge under impact of reactive fragments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0063
Citation: ZHAO Yufeng, DUAN Ji, FENG Shunshan. A study of the failure of cased charge under impact of reactive fragments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0063

反应破片对带壳装药的冲击效应

doi: 10.11883/bzycj-2024-0063
基金项目: 山西省基础研究计划(202203021222074,20210302124340)
详细信息
    作者简介:

    赵宇峰(1987- ),男,博士,讲师,zhaoyufeng0613@126.com

    通讯作者:

    冯顺山(1952- ),男,硕士,教授,ssfeng@bit.edu.cn

  • 中图分类号: TJ55; O389

A study of the failure of cased charge under impact of reactive fragments

  • 摘要: 为了研究反应破片对带壳装药的冲击毁伤效应,通过弹道实验和AUTODYN有限元仿真,结合由等效破片初速和等效格尼速度表征的带壳装药各失效等级判据,获得并对比了惰性破片和反应破片冲击下带壳装药的等效破片初速、等效格尼速度、带壳装药的反应持续时间、鉴证靶破坏情况和炸药层峰值压力,分析了反应破片靶后释能特点对带壳装药失效的影响。结果表明:惰性破片可使带壳装药发生正常爆轰失效;反应破片穿靶后的动能与化学能叠加效应弱,只能使带壳装药发生爆燃失效或爆炸失效,带壳装药的等效格尼速度与格尼速度的比值为0.014~0.233,炸药层峰值压力为1.04~3.62 GPa。
  • 图  1  轴对称等壁厚带壳装药结构一端轴线起爆条件下破片初速随弹轴的分布

    Figure  1.  Axial distribution of fragments velocity of axial symmetry and equal wall thickness cased charge under one axis detonating condition

    图  2  实验的布局示意图及现场布置

    Figure  2.  Schematic of terminal ballistic experimental setup and experiment environment

    图  3  带壳装药

    Figure  3.  Experimental target

    图  4  仿真模型示意图

    Figure  4.  Schematic of simulation model

    图  5  破片冲击带壳装药后的钢鉴证靶表面

    Figure  5.  Damage of steel identification target after fragments impacting cased charge

    图  6  破片冲击带壳装药后试件失效的典型高速摄影照片

    Figure  6.  Typical high-speed photography of specimen failure after fragments impacting cased charge

    图  7  破片冲击带壳装药仿真结果

    Figure  7.  Simulation results of fragments impacting cased charge

    图  8  惰性破片冲击带壳装药时壳体观测点的峰值压力时程曲线

    Figure  8.  Peak pressure history at the observation point of the casing when inert fragments impacting cased charge

    图  9  反应破片作用下炸药各观测点的峰值压力

    Figure  9.  Peak pressure at observation points of explosives under the impact of reactive fragments

    图  10  破片动能时程曲线

    Figure  10.  Kinetic energy history of the fragments

    表  1  反应破片试件参数

    Table  1.   Parameters of reactive fragments

    破片序号破片类型破片尺寸/mm材料组成质量/g
    1惰性破片Ф12×1245钢10.44
    2反应破片Ф12×18DU/PTFE16.46
    3反应破片Ф12×18Al/PTFE4.32
    4反应破片Ф12×18DU/PTFE16.27
    5反应破片Ф12×18DU/PTFE7.32
    6反应破片Ф12×18DU/PTFE7.40
    7反应破片Ф12×18DU/PTFE12.53
    下载: 导出CSV

    表  2  Al/PTFE材料的强度模型参数和状态方程参数[19]

    Table  2.   Strength model parameters and equation of state parameters of Al/PTFE[19]

    强度模型参数 状态方程参数
    A0/MPa B0/MPa n C0 m Tm/K C1/(m·s−1) S1 γ0
    8.044 250.6 1.8 0.4 1.426 500 1450 2.2584 0.9
    下载: 导出CSV

    表  3  反应破片和惰性破片冲击带壳装药的实验结果对比

    Table  3.   Comparison of experimental results between reactive fragments and inert fragments impacting cased charge

    破片序号 着靶速度/(m·s−1) vxSi/(m·s−1) $\sqrt{2E_{{\mathrm{S}}_i}} $/(m·s−1) kEi 鉴证靶破坏情况 炸药失效等级
    1 1210 1198 2598.7 0.964 圆形凹坑 正常爆轰
    2 934 290 629.1 0.233 无凹坑 爆炸
    3 1298 17 36.9 0.014 无凹坑 爆燃
    4 869 186 403.5 0.160 无凹坑 爆燃
    5 888 159 344.9 0.128 无凹坑 爆燃
    6 875 26 56.4 0.021 无凹坑 爆燃
    7 927 132 286.3 0.106 无凹坑 爆燃
    下载: 导出CSV

    表  4  惰性破片和反应破片3冲击带壳装药的实验与仿真结果对比

    Table  4.   Comparison of experimental and simulation results of inert fragments and reactive fragments impacting cased charge

    破片序号 vxSi $\sqrt{2E_{{\mathrm{S}}_i}} $ kEi
    实验/(m·s−1) 仿真/(m·s−1) 误差/% 实验/(m·s−1) 仿真/(m·s−1) 误差/% 实验 仿真 误差/%
    1 1198.0 1211.3 1.11 2598.7 2627.5 1.11 0.9640 0.9740 1.04
    3 17.0 18.2 7.06 36.9 39.5 7.04 0.0137 0.0146 6.57
    下载: 导出CSV
  • [1] FENG S S, WANG C L, HUANG G Y. Experimental study on the reaction zone distribution of impact-induced reactive materials [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 896–905. DOI: 10.1002/prep.201600274.
    [2] 冯顺山, 李伟, 周彤, 等. 内置冲击反应材料弹丸壳体侵彻损伤效应研究 [J]. 兵工学报, 2016, 37(S2): 61–68.

    FENG S S, LI W, ZHOU T, et al. Research on damage effect of a warhead filled with reactive materials [J]. Acta Armamentarii, 2016, 37(S2): 61–68.
    [3] 顾阳晨, 王金相, 陈兴旺, 等. 高速动能破片和包覆活性材料对屏蔽装药的串联毁伤效应 [J]. 含能材料, 2021, 29(7): 607–616. DOI: 10.11943/CJEM2020328.

    GU Y C, WANG J X, CHEN X W, et al. Tandem damage effect of high-speed kinetic fragments and coated active materials on shielded charges [J]. Chinese Journal of Energetic Materials, 2021, 29(7): 607–616. DOI: 10.11943/CJEM2020328.
    [4] 赵宏伟, 余庆波, 邓斌, 等. 活性破片终点毁伤威力试验研究 [J]. 北京理工大学学报, 2020, 40(4): 375–381. DOI: 10.15918/j.tbit1001-0645.2019.092.

    ZHAO H W, YU Q B, DENG B, et al. Experimental study on terminal demolition lethality of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2020, 40(4): 375–381. DOI: 10.15918/j.tbit1001-0645.2019.092.
    [5] 罗普光. 钨锆含能破片冲击反应特性及其对屏蔽炸药的毁伤研究 [D]. 北京: 北京理工大学, 2017: 72–78.

    LUO P G. Study on impact-initiated characters of W/Zr energetic fragments and damage effect to shielded explosives [D]. Beijing: Beijing Institute of Technology, 2017: 72–78.
    [6] 周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056. DOI: 10.11943/J.ISSN.1006-9941.2016.11.003.

    ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056. DOI: 10.11943/J.ISSN.1006-9941.2016.11.003.
    [7] 梁君夫. 活性破片作用屏蔽装药引爆增强效应研究 [D]. 北京: 北京理工大学, 2016: 63–68.

    LIANG J F. Research on enhanced initiation behavior of reactive material fragment impacting covered explosive [D]. Beijing: Beijing Institute of Technology, 2016: 63–68.
    [8] 李旭锋, 李向东, 顾文彬, 等. 含能破片引爆带壳炸药过程的数值模拟 [J]. 爆炸与冲击, 2014, 34(2): 202–208. DOI: 10.11883/1001-1455(2014)02-0202-07.

    LI X F, LI X D, GU W B, et al. Numerical simulation on detonating shelled explosives by energetic fragments [J]. Explosion and Shock Waves, 2014, 34(2): 202–208. DOI: 10.11883/1001-1455(2014)02-0202-07.
    [9] 王海福, 郑元枫, 余庆波, 等. 活性破片引爆屏蔽装药机理研究 [J]. 北京理工大学学报, 2012, 32(8): 786–789,823. DOI: 10.3969/j.issn.1001-0645.2012.08.004.

    WANG H F, ZHENG Y F, YU Q B, et al. Study on initiation mechanism of reactive fragment to covered explosive [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 786–789,823. DOI: 10.3969/j.issn.1001-0645.2012.08.004.
    [10] 何源, 何勇, 潘绪超, 等. 含能破片冲击引爆屏蔽炸药研究 [J]. 南京理工大学学报, 2011, 35(2): 187–193. DOI: 10.3969/j.issn.1005-9830.2011.02.008.

    HE Y, HE Y, PAN X C, et al. Initiation of shielded high explosive impacted by energetic fragment [J]. Journal of Nanjing University of Science and Technology, 2011, 35(2): 187–193. DOI: 10.3969/j.issn.1005-9830.2011.02.008.
    [11] 叶小军, 李向东. 含能破片撞击引燃屏蔽炸药的实验研究 [J]. 弹箭与制导学报, 2009, 29(6): 131–134. DOI: 10.3969/j.issn.1673-9728.2009.06.036.

    YE X J, LI X D. Experimental study on reactive fragments ignited charge covered with a metal plateafter the impact [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 131–134. DOI: 10.3969/j.issn.1673-9728.2009.06.036.
    [12] GURNEY R W. The initial velocities of fragments from bombs, shell, and grenades [R]. Aberdeen: Ballistic Research Laboratory, 1943.
    [13] LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115. DOI: 10.1016/j.ijimpeng.2015.01.007.
    [14] 冯顺山, 蒋建伟, 何顺录, 等. 偏轴心起爆破片初速径向分布规律研究 [J]. 兵工学报, 1993, 14(S1): 12–16.

    FENG S S, JIANG J W, HE S L, et al. On the pattern of radial distribution pattern of initial velocities of fragments under asymmetrical initiation [J]. Acta Armamentarii, 1993, 14(S1): 12–16.
    [15] 冯顺山, 崔秉贵. 战斗部破片初速轴向分布规律的实验研究 [J]. 兵工学报, 1987, 8(4): 60–63.

    FENG S S, CUI B G. An experimental investigation for the axial distribution of initial velocity of shells [J]. Acta ArmamentarⅡ, 1987, 8(4): 60–63.
    [16] 冯顺山, 赵宇峰, 边江楠, 等. 动能侵彻体冲击带壳炸药装药的爆燃失效 [J]. 含能材料, 2019, 27(6): 521–527. DOI: 10.11943/CJEM2018215.

    FENG S S, ZHAO Y F, BIAN J N, et al. Deflagration failure of explosive cased charge under impact of kinetic energy penetrators [J]. Chinese Journal of Energetic Materials, 2019, 27(6): 521–527. DOI: 10.11943/CJEM2018215.
    [17] Naval Sea Systems Command. MIL-STD-2105E Hazard assessment tests for non-nuclear munitions [S]. Washington: Naval Sea Systems Command, 2022.
    [18] 孙业斌. 爆炸作用与装药设计 [M]. 北京: 国防工业出版社, 1987: 76–78.

    SUN Y B. Explosion effect and charge design [M]. Beijing: National Defense Industry Press, 1987: 76–78.
    [19] RAFTENBERG M N, MOCK W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041.
    [20] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
    [21] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [22] 吴曼林, 刘玉存. 冲击波感度试验(SSGT)的数值模拟 [J]. 火工品, 2004(2): 16–19. DOI: 10.3969/j.issn.1003-1480.2004.02.005.

    WU M L, LIU Y C. Numerical modeling of shock sensitivity experiments (SSGT) [J]. Initiators & Pyrotechnics, 2004(2): 16–19. DOI: 10.3969/j.issn.1003-1480.2004.02.005.
    [23] 章冠人, 陈大年. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991: 109.

    ZHANG G R, CHEN D N. Initiation dynamics of condensed explosives [M]. Beijing: National Defense Industry Press, 1991: 109.
    [24] 王成龙, 黄广炎, 冯顺山. 贫铀材料冲击破碎和能量释放后效研究 [C]//战斗部与毁伤技术学术交流会. 北京, 2017: 785–791.

    WANG C L, HUANG G Y, FENG S S. Research on impact crushing and energy release aftereffects of depleted uranium materials [C]// Symposium on Warheads and Damage Technology. Beijing, 2017: 785–791.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  13
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-06-01
  • 网络出版日期:  2024-06-06

目录

    /

    返回文章
    返回