聚脲加固配筋砌体墙抗燃气爆炸动态响应的数值模拟分析

柳锦春 王钰颖 孙妮

柳锦春, 王钰颖, 孙妮. 聚脲加固配筋砌体墙抗燃气爆炸动态响应的数值模拟分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0077
引用本文: 柳锦春, 王钰颖, 孙妮. 聚脲加固配筋砌体墙抗燃气爆炸动态响应的数值模拟分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0077
LIU Jinchun, WANG Yuying, SUN Ni. Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0077
Citation: LIU Jinchun, WANG Yuying, SUN Ni. Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0077

聚脲加固配筋砌体墙抗燃气爆炸动态响应的数值模拟分析

doi: 10.11883/bzycj-2024-0077
详细信息
    作者简介:

    柳锦春(1973- ),男,博士,教授,weise@163.com

  • 中图分类号: O383.2; TU362

Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion

  • 摘要: 为研究燃气爆炸作用下配筋砌体墙的抗爆能力及聚脲对墙体的加固性能,采用LS-DYNA软件,对无配筋砌体墙、配筋砌体墙、聚脲加固无筋砌体墙、聚脲加固配筋砌体墙的抗燃气爆炸性能进行数值模拟,得到了不同墙体在峰值为5、10、20、30 kPa的燃气爆炸荷载作用下的动态响应,并对灰缝竖向配筋增强效果和聚脲加固效果进行了对比分析。结果表明:(1)无筋墙体抗燃气爆炸能力较弱,一般在20 kPa荷载作用下发生不可修复破坏,在30 kPa荷载作用下发生倒塌破坏;(2)在砌体墙灰缝中,竖向配置钢筋和在墙体表面喷涂聚脲均可增强砌体墙的抗爆能力。在20 kPa荷载作用下,各加固墙体跨中峰值位移均较无筋墙体的减小,破坏均较轻,均可修复,其中双面喷涂聚脲加固无筋墙体的抗爆效果最好,其在30 kPa荷载作用下也未发生倒塌破坏,配筋加强和背爆面喷涂聚脲加固的次之;(3)三组聚脲加固配筋墙体均可承受30 kPa燃气爆炸荷载的作用,迎爆面喷涂加固的墙体中间发生开裂,有碎块飞溅,跨中峰值位移最大,背爆面以及双面喷涂加固的墙体两端出现局部破坏,两者墙体基本完整,且双面喷涂的墙体跨中峰值位移最小,说明在灰缝竖向配筋的基础上再双面喷涂聚脲,抗爆加固效果最优,还可以承受更大的燃气爆炸荷载。
  • 图  1  典型压力波形与理想三角形爆炸荷载[11]

    Figure  1.  Typical pressure waveform and ideal triangular explosion loads[11]

    图  2  燃气爆炸荷载曲线[12]

    Figure  2.  Gas explosion load curve[12]

    图  3  5~30 kPa燃气爆炸荷载曲线

    Figure  3.  5−30 kPa gas explosion load curves

    图  4  砌体墙几何模型

    Figure  4.  Geometric model of masonry wall

    图  5  网格划分细节

    Figure  5.  Details of mesh division

    图  6  试验与模拟的位移时程曲线对比

    Figure  6.  Comparison of displacement curves between test and simulation

    图  7  DWW墙体跨中位移时程曲线

    Figure  7.  Midspan displacement curve of wall DWW

    图  8  墙体DWW破坏形态

    Figure  8.  Failure mode of wall DWW

    图  9  1/2墙体横截面钢筋分布

    Figure  9.  Reinforcement distribution of half wall cross section

    图  10  墙体DPW4跨中位移时程曲线

    Figure  10.  Midspan displacement curve of wall DPW4

    图  11  墙体DPW5跨中位移时程曲线

    Figure  11.  Midspan displacement curve of wall DPW5

    图  12  墙体DPW4破坏形态

    Figure  12.  Failure mode of wall DPW4

    图  13  墙体DPW5破坏形态

    Figure  13.  Failure mode of wall DPW5

    图  14  聚脲加固无筋墙体示例

    Figure  14.  Example of masonry wall strengthened with polyurea

    图  15  准静态有效应力-有效塑性应变关系

    Figure  15.  Relationship between quasi-static effective stress and effective plastic strain

    图  16  屈服应力缩放因子随应变率的变化关系[24]

    Figure  16.  Relationship between yield stress scaling factor and strain rate[24]

    图  17  墙体DWJY跨中位移时程曲线

    Figure  17.  Midspan displacement curves of wall DWJY

    图  18  墙体DWJB跨中位移时程曲线

    Figure  18.  Midspan displacement curves of wall DWJB

    图  19  墙体DWJS跨中位移时程曲线

    Figure  19.  Midspan displacement curves of wall DWJS

    图  20  墙体DWJY破坏形态

    Figure  20.  Failure mode of wall DWJY

    图  21  墙体DWJB破坏形态

    Figure  21.  Failure mode of wall DWJB

    图  22  墙体DWJS破坏形态

    Figure  22.  Failure mode of wall DWJS

    图  23  墙体DPJY跨中位移时程曲线.

    Figure  23.  Midspan displacement curves of wall DPJY

    图  24  墙体DPJB跨中位移时程曲线

    Figure  24.  Midspan displacement curves of wall DPJB

    图  25  墙体DPJS跨中位移时程曲线

    Figure  25.  Midspan displacement curves of wall DPJS

    图  26  墙体DPJY破坏形态

    Figure  26.  Failure mode of wall DWJY

    图  27  墙体DPJB破坏形态

    Figure  27.  Failure mode of wall DWJB

    图  28  墙体DPJS破坏形态

    Figure  28.  Failure mode of wall DWJS

    表  1  DWW墙体材料参数

    Table  1.   Material parameters of wall DWW

    材料 ρ/(kg·m−3) E/MPa μ $\sigma_{{\mathrm{b}}} $/MPa $\sigma_{{{\tau}}} $/MPa $\sigma_{{\mathrm{s}}} $/MPa KIC/(N·m−1) τ η
    砌块 1150 380 0.15 1.00 0.50 9.0 120 0.03 7.16×105
    砂浆 2100 4644 0.25 1.76 0.90 17.6 140 0.03 7.16×105
    下载: 导出CSV

    表  2  DWW墙体动态响应及损伤程度表

    Table  2.   Dynamic response and damage degree of wall DWW

    p/kPa $D_{{\mathrm{max}}} $/mm $\sigma_{{\mathrm{b,max}}} $/MPa $ \sigma_{{\mathrm{s,max}}}$/MPa θ/(°)
    5 1.99 1.76 3.01 0.1
    10 4.25 1.76 6.27 0.2
    20 24.80 13.40 20.10 1.0
    30 倒塌 10.60 20.20 >13.8
    下载: 导出CSV

    表  3  钢筋材料参数

    Table  3.   Reinforcement material parameters

    材料 $\rho_{{\mathrm{s}}} $/(kg·m−3) Es/MPa μs $\sigma_{{\mathrm{y}}} $/MPa $E_{{\mathrm{t}}} $/MPa Hp c n εf
    钢筋 7800 2×105 0.3 300 723 1 40 5 0.1
    下载: 导出CSV

    表  4  DPW墙体动态响应及损伤程度表

    Table  4.   Dynamic response and damage degree of wall DPW

    p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa θ/(°)
    DPW4 DPW5 DPW4 DPW5 DPW4 DPW5 DPW4 DPW5 DPW4 DPW5
    5 1.99 1.99 1.75 1.75 3.01 3.01 6.24 8.07 0.1 0.1
    10 4.25 4.24 1.76 1.76 6.21 6.21 35.60 32.00 0.2 0.2
    20 21.20 20.70 16.80 15.80 19.90 20.80 410.00 274.00 0.8 0.8
    30 倒塌 倒塌 16.00 17.50 24.70 23.20 549.00 503.00 >6.8 >6.9
    下载: 导出CSV

    表  5  聚脲材料参数

    Table  5.   Polyurea material parameters

    材料 ρj/(kg·m−3) Ej/MPa μj εm N
    聚脲 1000 212 0.4 0.5 2
    下载: 导出CSV

    表  6  DWJ墙体动态响应及损伤程度表

    Table  6.   Dynamic response and damage degree of wall DWJ

    p/
    kPa
    Dmax/mm σb,max/MPa σs,max/MPa σp,max/MPa θ/(°)
    DWJY DWJB DWJS DWJY DWJB DWJS DWJY DWJB DWJS DWJY DWJB DWJS DWJY DWJB DWJS
    5 1.94 1.94 1.89 1.75 1.75 1.76 2.94 2.92 2.87 0.437 0.149 0.430 0.1 0.1 0.1
    10 4.14 4.15 4.05 1.76 1.75 1.76 6.10 6.07 5.93 0.695 0.468 0.693 0.2 0.2 0.2
    20 18.00 21.40 15.70 8.22 7.70 9.41 19.50 19.00 19.00 9.680 11.500 10.000 0.7 0.8 0.6
    30 倒塌 倒塌 67.60 10.00 9.66 17.80 19.20 19.70 19.60 11.300 18.00 12.500 >7.3 >6.4 2.6
    下载: 导出CSV

    表  8  DPJB墙体动态响应及损伤程度

    Table  8.   Dynamic response and damage of wall DPJB

    p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa σp,max/MPa θ/(°)
    5 1.94 1.75 2.93 8.4 0.151 0.1
    10 4.14 1.76 6.06 31.5 0.467 0.2
    20 18.7.0 13.50 19.80 322.0 7.810 0.7
    30 106.00 18.80 20.60 522.0 10.000 4.1
    下载: 导出CSV

    表  7  DPJY墙体动态响应及损伤程度

    Table  7.   Dynamic response and damage of wall DPJY

    p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa σp,max/MPa θ/(°)
    5 1.94 1.75 2.95 7.22 0.437 0.1
    10 4.14 1.76 6.08 28.90 0.330 0.2
    20 14.30 15.80 19.70 423.00 9.920 0.5
    30 128.00 19.00 22.80 492.00 10.100 4.9
    下载: 导出CSV

    表  9  DPJS墙体动态响应及损伤程度

    Table  9.   Dynamic response and damage of wall DPJS

    p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa σp,max/MPa θ/(°)
    5 1.89 1.75 2.87 7.65 0.430 0.1
    10 4.04 1.76 5.91 30.60 0.687 0.2
    20 13.30 14.00 19.20 289.00 9.790 0.5
    30 53.80 17.40 20.70 474.00 11.500 2.1
    下载: 导出CSV
  • [1] 田玉滨, 李朝, 张春巍. 爆炸荷载作用下配筋砌体结构的动力响应 [J]. 爆炸与冲击, 2012, 32(6): 658–662. DOI: 10.11883/1001-1455(2012)06-0658-05.

    TIAN Y B, LI Z, ZHANG C W. Dynamic response of reinforced masonry structure under blast load [J]. Explosion and Shock Waves, 2012, 32(6): 658–662. DOI: 10.11883/1001-1455(2012)06-0658-05.
    [2] 李朝. 基于ANSYS/LS-DYNA软件的配筋砌块墙体爆炸数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2007: 39–62.

    LI Z. Numerical simulation of explode against reinforced masonry wall using ANSYS/LS-DYNA [D]. Harbin: Harbin Institute of Technology, 2007: 39–62.
    [3] 尚伟, 黄正祥, 祖旭东, 等. 接触爆炸下聚脲加固砌体墙的抗爆性能试验研究[C]//中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019: 3843–3851.
    [4] 谢超, 韩笑, 魏雪英. 配筋混凝土砌块墙体的爆炸效应分析[C]//第21届全国结构工程学术会议论文集第Ⅲ册. 北京: 《工程力学》杂志社, 2012: 347–352.
    [5] GU M, LING X D, WANG H X, et al. Experimental and numerical study of polymer-retrofitted masonry walls under gas explosions [J]. Processes, 2019, 7(12): 863. DOI: 10.3390/pr7120863.
    [6] 熊轩. 钢筋混凝土框架结构中砌体填充墙抗燃气爆炸性能研究[D]. 武汉: 武汉理工大学, 2013: 33–55.

    XIONG X. Study on masonry infilled wall in reinforced concrete frame structure under gas explosion load [D]. Wuhan: Wuhan University of Technology, 2013: 13–55.
    [7] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012: 65–75.

    HAN X. The dynamic response of brick masonry wall subjected to gas explosion load [D]. Xi’an: Chang’an University, 2012: 65–75.
    [8] 彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.

    PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.
    [9] GODIO M, PORTAL N W, FLANSBJER M, et al. Experimental and numerical approaches to investigate the out-of-plane response of unreinforced masonry walls subjected to free far-field blasts [J]. Engineering Structures, 2021, 239: 112328. DOI: 10.1016/j.engstruct.2021.112328.
    [10] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055.
    [11] SHEARER M J, TAM V H Y, CORRB. Analysis of results from large scale hydrocarbon gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(2): 167–173. DOI: 10.1016/S0950-4230(99)00020-0.
    [12] 韩永利, 陈龙珠. 燃气爆炸事故对住宅建筑的破坏 [J]. 土木建筑与环境工程, 2011, 33(6): 120–123,128. DOI: 10.3969/j.issn.1674-4764.2011.06.020.

    HAN Y L, CHEN L Z. Failure analysis of residential buildings under the gas explosion accident [J]. Journal of Civil, Architectural& Environmental Engineering, 2011, 33(6): 120–123,128. DOI: 10.3969/j.issn.1674-4764.2011.06.020.
    [13] HAN Y L, CHEN L Z. Mechanical model of domestic gas explosion load [J]. Transactions of Tianjin University, 2008, 14(6): 434–440. DOI: 10.1007/s12209-008-0075-x.
    [14] 陈力, 郑康, 祝融, 等. CFRP加固砌体填充墙抗燃气爆炸泄爆荷载的优化设计及动力响应 [J]. 天津大学学报(自然科学与工程技术版), 2018, 51(5): 547–553. DOI: 10.11784/tdxbz201706061.

    CHEN L, ZHENG K, ZHU R, et al. Optimization design and dynamic responses of CFRP reinforced masonry infilled wall subjected to vented gas explosion [J]. Journal of Tianjin University (Science and Technology), 2018, 51(5): 547–553. DOI: 10.11784/tdxbz201706061.
    [15] 王钰颖, 柳锦春, 孙妮. 砌体墙抗爆性能数值模拟的精度和效率分析[C]//2021年工业建筑学术交流会论文集(下册). 北京: 《工业建筑》杂志社, 2021: 316–320, 357.
    [16] 李展. 燃气泄爆荷载及其对砌体填充墙破坏效应研究[D]. 南京: 陆军工程大学, 2018: 33–46.
    [17] U. S. Department of the Army, Navy and the Air Force. UFC 3-340-02Structures to resist the effects of accidental explosions, with change 2 [S]. Washington: U. S. Department of Defense, 2008.
    [18] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB 50003-2011砌体结构设计规范[S]. 北京: 中国计划出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 50003-2011Code for design of masonry structures [S]. Beijing: China Planning Press, 2012.
    [19] 吴志昇, 宋殿义, 严波, 等. 接触爆炸作用下钢筋混凝土单向板动态响应的数值分析[C]//第27届全国结构工程学术会议论文集(第Ⅱ册). 北京: 《工程力学》杂志社, 2018: 425–434.
    [20] 闫俊伯, 刘彦, 李亚飞, 等. 不同强度混凝土及钢筋对钢筋混凝土柱抗爆性能的影响 [J]. 兵工学报, 2021, 42(3): 530–544. DOI: 10.3969/j.issn.1000-1093.2021.03.009.

    YAN J B, LIU Y, LI Y F, et al. Effects of high performance concrete and high strength steel on the blast response of steel reinforced concrete columns [J]. Acta Armamentarii, 2021, 42(3): 530–544. DOI: 10.3969/j.issn.1000-1093.2021.03.009.
    [21] 王军国. 喷涂聚脲加固粘土砖砌体抗动载性能试验研究及数值分析[D]. 合肥: 中国科学技术大学, 2017: 105.

    WANG J G. Experimental and numerical investigation of clay brick masonry walls strengthened with spary polyurea elastomer under blast loads [D]. Hefei: University of Science and Technology of China, 2017: 105.
    [22] 许三罗, 方秦. 弹性聚合物和碳纤维布加固的砌体墙抗爆性能的数值分析 [J]. 解放军理工大学学报(自然科学版), 2010, 11(3): 306–311. DOI: 10.7666/j.issn.1009-3443.20100313.

    XU S L, FANG Q. Numerical analysis on blast-resistant capacity of masonry walls retrofitted with elastomeric polymer and CFRP [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(3): 306–311. DOI: 10.7666/j.issn.1009-3443.20100313.
    [23] 王钰颖. 喷涂聚脲加固砌体墙抗燃气爆炸性能数值分析[D]. 南京: 南京航空航天大学, 2022: 29–30.

    WANG Y Y. Numerical analysis of gas explosion resistance of masonry wall strengthened with spray polyuria [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 29–30.
    [24] 孙妮, 柳锦春, 王钰颖. 聚脲材料动态压缩力学行为的数值模拟研究 [J]. 工程力学, 2023, 40(1): 144–154. DOI: 10.6052/j.issn.1000-4750.2021.08.0596.

    SUN N, LIU J C, WANG Y Y. Numerical simulation research on dynamic compression mechanical behavior of polyurea [J]. Engineering Mechanics, 2023, 40(1): 144–154. DOI: 10.6052/j.issn.1000-4750.2021.08.0596.
  • 加载中
图(28) / 表(9)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  6
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-05-12
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回