接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能

徐赵威 汪维 李奕硕 张仲昊 张丛琨

徐赵威, 汪维, 李奕硕, 张仲昊, 张丛琨. 接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0083
引用本文: 徐赵威, 汪维, 李奕硕, 张仲昊, 张丛琨. 接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0083
XU Zhaowei, WANG Wei, LI Yishuo, ZHANG Zhonghao, ZHANG Congkun. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0083
Citation: XU Zhaowei, WANG Wei, LI Yishuo, ZHANG Zhonghao, ZHANG Congkun. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0083

接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能

doi: 10.11883/bzycj-2024-0083
基金项目: 国家自然科学基金(11302261,11972201)
详细信息
    作者简介:

    徐赵威(1999- ),男,硕士研究生,2211090196@nbu.edu.cn

    通讯作者:

    汪 维(1983- ),男,博士,教授,wangwei7@nbu.edu.cn

  • 中图分类号: O383

Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion

  • 摘要: 为了研究聚脲/钢筋混凝土厚板复合结构的抗爆性能,对聚脲/钢筋混凝土厚板复合结构开展不同装药量下的接触爆炸实验,并对整体及局部的破坏特征进行分析。利用LS-DYNA有限元仿真软件研究聚脲/钢筋混凝土厚板复合结构的损伤过程及机理,并进一步分析了聚脲/钢筋混凝土厚板复合结构的破坏模式及特征。实验及有限元结果表明:接触爆炸荷载作用下的聚脲/钢筋混凝土厚板复合结构呈现6种破坏模式(正面成坑;层裂破坏;层裂鼓包;震塌破坏,聚脲涂层鼓包大变形;爆炸贯穿,聚脲涂层严重鼓包变形;贯穿和撕裂破坏);在钢筋混凝土厚板背面涂覆聚脲有效增强了复合结构的抗爆性能。研究成果可为实际应用下的聚脲/钢筋混凝土厚板复合结构抗爆设计防护提供参考依据。
  • 图  1  聚脲/钢筋混凝土厚板复合结构示意图

    Figure  1.  Schematic diagram of a polyurea/reinforced concrete thick plate composite structure

    图  2  试件配筋方式

    Figure  2.  Specimen reinforcement pattern

    图  3  接触爆炸实验装置

    Figure  3.  The contact explosion test device

    图  4  有限元模型

    Figure  4.  Finite element model

    图  5  3 kg炸药接触爆炸下RCP1实验与数值结果对比

    Figure  5.  Comparison of experimental and numerical results for RCP1 under 3-kg-explosive contact explosion

    图  6  5 kg炸药接触爆炸下RCP2实验结果与数值结果的对比

    Figure  6.  Comparison of experimental and numerical results for RCP2 under 5-kg-explosvie contact explosion

    图  7  RCP1试件迎爆面(上)及背爆面(下)损伤过程

    Figure  7.  Damage process of RCP1 specimen on the face (top) and back (bottom) of the blast surface

    图  8  接触爆炸荷载下的压力场分布

    Figure  8.  Distribution of pressure field under contact blast loading

    图  9  聚脲涂覆RC板应力波传播

    Figure  9.  Stress wave propagation in polyurea-coated RC slabs

    图  10  聚脲层内加载与卸载波相互作用过程

    Figure  10.  Interaction of loading and unloading waves within a polyurea layer

    图  11  不同药量下聚脲/钢筋混凝土厚板复合结构的破坏模式

    Figure  11.  Damage modes of polyurea/reinforced concrete thick slab composite structures under different dosages

    图  12  聚脲/钢筋混凝土厚板复合结构的破坏模式

    Figure  12.  Damage modes of polyurea/reinforced concrete thick slab composite structures

    表  1  实验工况

    Table  1.   Test conditions

    工况模型TNT药量/kg聚脲涂层
    厚度/mm
    涂覆
    位置
    破坏形态
    1RCP1310背面未贯穿,背面最大
    鼓起高度90 mm
    2RCP2510背面未贯穿,背面最大
    鼓起高度172 mm
    下载: 导出CSV

    表  2  实验与数值计算结果对比

    Table  2.   Comparison of experimental and numerical calculation results

    模型 实验 模拟 模拟结果与实验结果的相对误差/%
    D/mm H/mm d/mm h/mm D/mm H/mm d/mm h/mm D H d h
    RCP1 738 170 1250 90 700 160 1200 84 5.15 5.88 4.00 6.67
    RCP2 760 210 1270 172 720 190 1250 164 5.26 9.52 1.57 4.65
    下载: 导出CSV

    表  3  数值结果

    Table  3.   Numerical results

    工况编号 装药量/kg 聚脲厚度/mm 比例厚度/(m∙kg−1/3) 破坏模式
    RCP-1 0.5 10 0.378 正面成坑
    RCP-2 1.0 10 0.300 正面成坑
    RCP-3 1.5 10 0.262 层裂破坏
    RCP-4 2.0 10 0.238 层裂鼓包
    RCP-5 2.5 10 0.221 层裂鼓包
    RCP-6 3.0 10 0.208 层裂鼓包
    RCP-7 3.5 10 0.198 层裂鼓包
    RCP-8 4.0 10 0.189 层裂鼓包
    RCP-9 4.5 10 0.182 层裂鼓包
    RCP-10 5.0 10 0.175 层裂鼓包
    RCP-11 5.5 10 0.170 层裂鼓包
    RCP-12 6.0 10 0.165 层裂鼓包
    RCP-13 6.5 10 0.161 层裂鼓包
    RCP-14 7.0 10 0.157 层裂鼓包
    RCP-15 7.5 10 0.153 层裂鼓包
    RCP-16 8.0 10 0.150 层裂鼓包
    RCP-17 8.5 10 0.147 震塌破坏
    RCP-18 9.0 10 0.144 震塌破坏
    RCP-19 9.5 10 0.142 震塌破坏
    RCP-20 10.0 10 0.139 震塌破坏
    RCP-21 10.5 10 0.137 震塌破坏
    RCP-22 11.0 10 0.135 爆炸贯穿
    RCP-23 11.5 10 0.133 爆炸贯穿
    RCP-24 12.0 10 0.131 贯穿和撕裂
    下载: 导出CSV
  • [1] ZHAO C F, HE K C, ZHI L H, et al. Blast behavior of steel-concrete-steel sandwich panel: experiment and numerical simulation [J]. Engineering Structures, 2021, 246: 112998. DOI: 10.1016/j.engstruct.2021.112998.
    [2] 杨光瑞, 汪维, 杨建超, 等. POZD涂覆波纹钢加固钢筋混凝土板抗爆性能 [J]. 兵工学报, 2023, 44(5): 1374–1383. DOI: 10.12382/bgxb.2022.0024.

    YANG G Y, WANG W, YANG J C, et al. Blast resistance of reinforced concrete slabs strengthened with POZD coated corrugated steel [J]. Acta Armamentarii, 2023, 44(5): 1374–1383. DOI: 10.12382/bgxb.2022.0024.
    [3] HONG J, FANG Q, CHEN L, et al. Numerical predictions of concrete slabs under contact explosion by modified K&C material model [J]. Construction and Building Materials, 2017, 155: 1013–1024. DOI: 10.1016/j.conbuildmat.2017.08.060.
    [4] REBELO H B, CISMASIU C. Robustness assessment of a deterministically designed sacrificial cladding for structural protection [J]. Engineering Structures, 2021, 240: 112279. DOI: 10.1016/j.engstruct.2021.112279.
    [5] LI J, WU C Q, HAO H. Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion [J]. Engineering Structures, 2015, 102: 395–408. DOI: 10.1016/j.engstruct.2015.08.032.
    [6] 蔡路军, 曾成林, 陈少杰, 等. 塑钢纤维混凝土板抗爆性能的试验研究及数值模拟 [J]. 混凝土, 2022(11): 6–10. DOI: 10.3969/j.issn.1002-3550.2022.11.002.

    CAI L J, ZENG C L, CHEN S J, et al. Experimental study and numerical simulation of anti-blast performance of plastic steel fiber concrete slab [J]. Concrete, 2022(11): 6–10. DOI: 10.3969/j.issn.1002-3550.2022.11.002.
    [7] LEE M J, KWAK H G. Numerical simulations of blast responses for SFRC slabs using an orthotropic model [J]. Engineering Structures, 2021, 238: 112150. DOI: 10.1016/j.engstruct.2021.112150.
    [8] 姜天华, 王威, 杨云锋, 等. 钢纤维混凝土箱梁在爆炸荷载作用下的动态响应 [J]. 混凝土与水泥制品, 2019(9): 50–53. DOI: 10.19761/j.1000-4637.2019.09.050.04.

    JIANG T H, WANG W, YANG Y F, et al. Dynamic response of the steel fiber reinforced concrete box girders under blast loading [J]. China Concrete and Cement Products, 2019(9): 50–53. DOI: 10.19761/j.1000-4637.2019.09.050.04.
    [9] HE J T, LEI D, SHE Z S, et al. Flexural performance and damage evaluation on basalt fiber reinforced polymer (BFRP) sheet reinforced concrete [J]. Construction and Building Materials, 2023, 395: 132321. DOI: 10.1016/j.conbuildmat.2023.132321.
    [10] LI S S, HE H G, YANG D P, et al. Blast responses of BFRP-bar reinforced AAC panels [J]. Construction and Building Materials, 2023, 365: 129655. DOI: 10.1016/j.conbuildmat.2022.129655.
    [11] GAO Y J, ZHOU Y Z, ZHOU J N, et al. Blast responses of one-way sea-sand seawater concrete slabs reinforced with BFRP bars [J]. Construction and Building Materials, 2020, 232: 117254. DOI: 10.1016/j.conbuildmat.2019.117254.
    [12] YANG F, FENG W H, LIU F, et al. Experimental and numerical study of rubber concrete slabs with steel reinforcement under close-in blast loading [J]. Construction and Building Materials, 2019, 198: 423–436. DOI: 10.1016/j.conbuildmat.2018.11.248.
    [13] YU J, LIANG S L, REN Z P, et al. Structural behavior of steel-concrete-steel and steel-ultra-high-performance-concrete-steel composite panels subjected to near-field blast load [J]. Journal of Constructional Steel Research, 2023, 210: 108108. DOI: 10.1016/j.jcsr.2023.108108.
    [14] ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [15] 王逸平, 汪维, 杨建超, 等. 钢板/POZD复合结构在近距空爆载荷下的抗爆性能 [J]. 高压物理学报, 2023, 37(1): 014104. DOI: 10.11858/gywlxb.20220650.

    WANG Y P, WANG W, YANG J C, et al. Blast resistant performance of steel/POZD composite structures under close-range air blast loading [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014104. DOI: 10.11858/gywlxb.20220650.
    [16] ZHANG H, CHANG B X, PENG K F, et al. Anti-blast analysis and design of a sacrificial cladding with graded foam-filled tubes [J]. Thin-Walled Structures, 2023, 182: 110313. DOI: 10.1016/j.tws.2022.110313.
    [17] KOSTOPOULOS V, KALIMERIS G D, GIANNAROS E. Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding [J]. Composites Science and Technology, 2022, 230: 109330. DOI: 10.1016/j.compscitech.2022.109330.
    [18] 王大江, 李鑫, 朱健. 爆炸载荷下蜂窝/波纹夹芯方板的动力学行为研究 [J]. 太原理工大学学报, 2018, 49(6): 881–885. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.06.012.

    WANG D J, LI X, ZHU J. Dynamic behavior of honeycomb/corrugated sandwich plates under blast loading [J]. Journal of Taiyuan University of Technology, 2018, 49(6): 881–885. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.06.012.
    [19] KUMAR R, PATEL S. Failure analysis on octagonal honeycomb sandwich panel under air blast loading [J]. Materials Today: Proceedings, 2021, 46: 9667–9672. DOI: 10.1016/j.matpr.2020.07.525.
    [20] CHEN Y S, WANG B, ZHANG B, et al. Polyurea coating for foamed concrete panel: an efficient way to resist explosion [J]. Defence Technology, 2020, 16(1): 136–149. DOI: 10.1016/j.dt.2019.06.010.
    [21] RAMAN S N, NGO T, MENDIS P, et al. Elastomeric polymers for retrofitting of reinforced concrete structures against the explosive effects of blast [J]. Advances in Materials Science and Engineering, 2012, 2012: 754142. DOI: 10.1155/2012/754142.
    [22] 汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion and Shock Waves, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.
    [23] 杨建超, 汪剑辉, 王幸, 等. 聚异氰氨酸脂噁唑烷弹性涂层钢筋混凝土板抗震塌机理 [J]. 科学技术与工程, 2022, 22(4): 1338–1343. DOI: 10.3969/j.issn.1671-1815.2022.04.005.

    YANG J C, WANG J H, WANG X, et al. Anti-collapsing mechanism of reinforced concrete slab with polyisocyanate-oxazodone elastic coating [J]. Science Technology and Engineering, 2022, 22(4): 1338–1343. DOI: 10.3969/j.issn.1671-1815.2022.04.005.
    [24] 彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.

    PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.
    [25] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading [J]. International Journal of Impact Engineering, 2012, 49: 158–164. DOI: 10.1016/j.ijimpeng.2012.03.010.
    [26] 陈锐林, 李康, 董琪, 等. CFRP加固钢筋混凝土板爆炸冲击作用下动力响应分析的数值模拟 [J]. 铁道科学与工程学报, 2020, 17(6): 1517–1527. DOI: 10.19713/j.cnki.43-1423/u.T20180143.

    CHEN R L, LI K, DONG Q, et al. Numerical simulation of dynamic response analysis of reinforced concrete slabs strengthened with CFRP under blast load [J]. Journal of Railway Science and Engineering, 2020, 17(6): 1517–1527. DOI: 10.19713/j.cnki.43-1423/u.T20180143.
    [27] 王喜梦, 刘均, 陈长海, 等. 近距空爆载荷下钢板/聚脲复合结构动响应特性仿真 [J]. 中国舰船研究, 2021, 16(2): 116–124. DOI: 10.19693/j.issn.1673-3185.01833.

    WANG X M, LIU J, CHEN C H, et al. Simulation on dynamic response characteristics of steel/polyurea composite structures under close-range air blast loading [J]. Chinese Journal of Ship Research, 2021, 16(2): 116–124. DOI: 10.19693/j.issn.1673-3185.01833.
    [28] ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64: 54–62. DOI: 10.1016/j.tafmec.2013.03.006.
    [29] TAO C, JI C, TU J, et al. Protection mechanism of liquid-filled welded square steel container with polyurea elastomer subjected to small-arms bullet [J]. Thin-Walled Structures, 2024, 198: 111668. DOI: 10.1016/j.tws.2024.111668.
    [30] 赵苏政, 葛文璇. 聚脲涂层防护下钢筋混凝土柱的抗爆性能研究 [J]. 工程爆破, 2022, 28(6): 85–91. DOI: 10.19931/j.EB.20210253.

    ZHAO S Z, GE W X. Study on anti-detonation performance of reinforced concrete columns protected by polyurea coating [J]. Engineering Blasting, 2022, 28(6): 85–91. DOI: 10.19931/j.EB.20210253.
    [31] 张鹏. 聚脲涂覆结构抗弹抗爆防护性能与机制研究 [D]. 太原: 中北大学, 2020.

    ZHANG P. Protection performance and mechanism of polyurea coated structures under ballistic and blast loading conditions [D]. Taiyuan: North University of China, 2020.
    [32] 张天锡. 工程爆破中卸载波与加载波互相作用的初步讨论 [J]. 爆破, 2010, 27(2): 18–21. DOI: 10.3963/j.issn.1001-487X.2010.02.005.

    ZHANG T X. Discussion on Interaction between Unloading Wave and Loading Wave in Blasting [J]. Blasting, 2010, 27(2): 18–21. DOI: 10.3963/j.issn.1001-487X.2010.02.005.
    [33] ZHU W Q, XIAO Y, YU J H, et al. Damage modes and mechanism of steel-concrete composite bridge slabs under contact explosion [J]. Journal of Constructional Steel Research, 2024, 212: 108223. DOI: 10.1016/j.jcsr.2023.108223.
    [34] MCVAY M K. Spall damage of concrete structures[R]. USA: Mississippi State University. 1988: 204–209.
    [35] YU X, ZHOU B K, HU F, et al. Experimental investigation of basalt fiber-reinforced polymer (BFRP) bar reinforced concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2020, 144: 103632. DOI: 10.1016/j.ijimpeng.2020.103632.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  12
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 修回日期:  2024-06-05
  • 网络出版日期:  2024-06-06

目录

    /

    返回文章
    返回