The characteristics of shock wave loads from air blast near the water surface
-
摘要: 靠近水面的空中爆炸是舰船的重要威胁之一。为了研究水面传播冲击波的载荷特性,采用TNT/RDX(40/60)炸药开展了触水、近水和空中3种典型比高条件下的爆炸实验,测量得到了冲击波超压和爆炸的高速摄影图像。采用数值模拟方法进一步研究了爆炸现象和水面冲击波的载荷规律。结果表明:触水、近水和空中爆炸现象存在显著差异。触水爆炸时,爆轰产物直接驱动水面形成半球形空腔,水坑边缘的水被挤压向上飞溅形成空心水柱;近水爆炸时,爆轰产物对水面的碰撞作用相对较弱,水面上的冲击波主要以马赫波沿着水面向外传播;空中爆炸时,冲击波在水面存在明显的规则和非规则反射区。在同等当量条件下,触水爆炸时的水面冲击波超压较近水爆炸的低,但水中冲击波压力更高,因此水面不能再看成刚性平面。通过数据拟合得到了触水和典型近水爆炸条件下,水面上水平距离在0.5~4.0 m/kg1/3范围内的冲击波超压和正压持续时间计算公式,可为冲击波载荷计算和分析提供参考。Abstract: Blasts near the water surface are one of the major threats to ships. Experiments were carried out to study the load characteristics of the shock wave on the water surface with TNT/RDX(40/60) explosives. Three typical scaled burst heights were used: contact burst, near-surface blast, and air blast. In the experiments, overpressures in air and water were obtained, and high-speed photographic was used to record the explosion images. A numerical simulation method based on a five-equation model was used to study further the explosion phenomenon and the loading characteristic of shock waves on the water surface. The numerical simulation results are in good agreement with the experimental results. The results show significant differences among contact bursts, near-surface blasts, and air blasts. In the contact burst, the detonation products drive the water surface directly, creating a hemispherical cavity, and the water at the edge of the cavity is squeezed upwards, forming a hollow water column. In the near-surface blast, the collision of the detonation products with the water surface is relatively weak, and the shock wave on the water surface mainly propagates outwards as Mach waves along the water surface. In the air blast, there are clear regular and irregular reflection zones of the shock wave on the water surface. Under the same yield conditions, the overpressure on the water surface of the contact burst is lower than that of the near-surface blast, but the pressure in the water is more stressful. Therefore, the water surface can no longer be considered a rigid plane. The formulas of overpressure and positive pressure duration of shock wave on the water surface within the range of 0.5~4.0 m/kg1/3 in the contact burst and the near-surface blast were obtained through data fitting, which provides a reference for shock wave loading calculation and analysis.
-
Key words:
- air blast /
- near-surface /
- contact surface /
- underwater explosion /
- shock wave
-
表 1 实验工况
Table 1. Experimental conditions
工况 场景 当量/kg 爆高/m 比高/(m·kg−1/3) 空中测点高度/m 水中测点深度/m 1 触水爆炸 0.12 0 0 0.05 0.08 2 触水爆炸 0.24 0 0 0.06 0.09 3 触水爆炸 0.48 0 0 0.07 0.11 4 近水爆炸 0.12 0.106 0.215 0.05 0.08 5 近水爆炸 0.24 0.126 0.203 0.06 0.09 6 近水爆炸 0.48 0.147 0.188 0.07 0.11 7 空中爆炸 0.12 0.319 0.647 0.16 0.08 8 空中爆炸 0.24 0.378 0.608 0.19 0.09 9 空中爆炸 0.48 0.472 0.603 0.23 0.11 表 2 空中冲击波超压峰值的实验和模拟结果对比
Table 2. Comparison of air blast overpressures between experiment and simulation
工况 超压峰值 0.5 m 测点 1.0 m 测点 1.5 m 测点 2.0 m 测点 实验/kPa 模拟/kPa 误差/% 实验/kPa 模拟/kPa 误差/% 实验/kPa 模拟/kPa 误差/% 实验/kPa 模拟/kPa 误差/% 1 751.8 671.1 −10.7 250.2 169.2 −32.4 114.9 81.9 −28.7 69.8 52.0 −25.5 2 631.1 717.5 13.7 264.3 119.8 74.7 3 1335.0 1215.0 −9.0 384.7 192.0 169.1 −11.9 117.9 99.0 −16.0 4 1697.4 1503.4 −11.4 360.8 293.1 −18.8 144.2 122.7 −14.9 90.7 70.1 −22.7 5 2855.1 2332.6 −18.3 529.9 197.4 108.5 6 2912.2 3480.1 19.5 717.5 950.3 32.4 278.4 327.3 17.6 138.5 170.0 22.7 7 1129.1 722.1 −36.0 376.2 285.7 −24.1 194.9 125.0 −35.9 101.6 72.6 −28.5 8 1868.7 1207.4 −35.4 563.8 546.1 −3.1 203.1 112.5 9 1807.6 1651.9 −8.6 671.1 271.8 322.2 18.5 151.6 170.3 12.3 平均值 18.1 22.1 21.2 21.3 -
[1] 李本平, 王永, 卢文波. 制导炸弹在坝前水面爆炸破坏效应研究 [J]. 爆破, 2007, 24(4): 7–10, 20. DOI: 10.3963/j.issn.1001-487X.2007.04.002.LI B P, WANG Y, LU W B. Study on the damage effect for water surface explosion of precision guided bomb [J]. Blasting, 2007, 24(4): 7–10, 20. DOI: 10.3963/j.issn.1001-487X.2007.04.002. [2] 李润珊, 易嘉钰, 陶崇铸, 等. 触、近水面爆炸自由场冲击波特性的试验研究 [J]. 爆炸与冲击, 1991, 11(4): 331–338.LI R S, YI J Y, TAO C Z, et al. Experimental studies of shock properties generated by explosions on or just above water surface in free field [J]. Explosion and Shock Waves, 1991, 11(4): 331–338. [3] 余俊, 王海坤, 刘国振, 等. 水下近自由面爆炸过程中的多相流运动特性研究 [J]. 船舶力学, 2023, 27(2): 163–172. DOI: 10.3969/j.issn.1007-7294.2023.02.001.YU J, WANG H K, LIU G Z, et al. Motion characteristics of multiphase flow in underwater explosion near free surface [J]. Journal of Ship Mechanics, 2023, 27(2): 163–172. DOI: 10.3969/j.issn.1007-7294.2023.02.001. [4] 王高辉, 张社荣, 卢文波. 近边界面的水下爆炸冲击波传播特性及气穴效应 [J]. 水利学报, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20140035.WANG G H, ZHANG S R, LU W B. The influence of boundaries on the shock wave propagation characteristics and cavitation effects of underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20140035. [5] PECKHAM P J. Air-to-water blast wave transfer [R]. White Oak: Naval Surface Weapons Center, 1976. [6] SWISDAK JR M M. Explosion effects & properties part II: explosion effects in water [R]. Dahlgren: Naval Surface Weapons Center, 1978. [7] 黄超, 汪斌, 姚熊亮, 等. 实验室尺度水下爆炸气泡实验方法 [J]. 传感器与微系统, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.HUANG C, WANG B, YAO X L, et al. Laboratory-scale underwater explosion bubble experiment method [J]. Transducer and Microsystem Technologies, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023. [8] ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181(2): 577–616. DOI: 10.1006/jcph.2002.7143. [9] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000. [10] MURRONE A, GUILLARD H. A five equation reduced model for compressible two phase flow problems [J]. Journal of Computational Physics, 2005, 202(2): 664–698. DOI: 10.1016/j.jcp.2004.07.019. [11] 张磐, 李康, 刘娜. 水下爆炸数值模拟程序开发及验证 [C]//第十届全国青年计算物理学术会议摘要集. 喀什: 中国核学会, 2019: 61–67. DOI: 10.26914/c.cnkihy.2019.066026. [12] 段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.DUAN X Y, CUI Q Z, GUO X Y, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013. -


下载: