• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

理想流体空穴湮灭能量汇问题的特征能量因子

陈昊祥 王明洋 李杰 蒋海明

陈昊祥, 王明洋, 李杰, 蒋海明. 理想流体空穴湮灭能量汇问题的特征能量因子[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0470
引用本文: 陈昊祥, 王明洋, 李杰, 蒋海明. 理想流体空穴湮灭能量汇问题的特征能量因子[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0470
CHEN Haoxiang, WANG Mingyang, LI Jie, JIANG Haiming. Characteristic energy factors for energy sink problem of the ideal fluid cavity annihilation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0470
Citation: CHEN Haoxiang, WANG Mingyang, LI Jie, JIANG Haiming. Characteristic energy factors for energy sink problem of the ideal fluid cavity annihilation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0470

理想流体空穴湮灭能量汇问题的特征能量因子

doi: 10.11883/bzycj-2024-0470
基金项目: 北京市自然科学基金(8222010);国家自然科学基金(52408353);军事科学院国防工程研究院目标易损性评估全国重点实验室开放基金(YSX2024KFXY003)
详细信息
    作者简介:

    陈昊祥(1992- ),男,博士,副教授,chx@stu.bucea.edu.cn

    通讯作者:

    王明洋(1966- ),男,博士,教授,wmyrf@163.com

  • 中图分类号: O389

Characteristic energy factors for energy sink problem of the ideal fluid cavity annihilation

  • 摘要: 在物理学中,“源”指的是物质或能量的出发点,而“汇”则是指物质或能量的到达点。类比地下爆炸能量源问题,提出了理想流体空穴湮灭的能量汇问题,详细分析了理想流体空穴湮灭问题中能量的平衡关系与调整机制,建立了流体压力做功与能量汇聚、传递和转化的关系,引入了描述能量汇“向心汇聚”问题的特征能量因子。分析了特征能量因子的物理机理与数学依据,阐述了特征能量因子的特点、优势以及适用范围。能量汇特征能量因子包含了汇聚能量、空穴的几何尺寸以及流体的物理性质等信息,能够很好地表征能量汇问题的“汇聚”特性,可为后续固体“能量汇”问题的研究奠定理论基础。
  • 图  1  地冲击能量系数随比例埋深的变化

    Figure  1.  Variation of impact energy coefficient with proportional burial depth

    图  2  纵波最大粒子速度随比例埋深的变化规律

    Figure  2.  Variation of the maximum particle velocity of the longitudinal wave with the distance from the explosion center

    图  3  “能量源”和“能量汇”问题示意图

    Figure  3.  Configuration for energy source and energy sink

    图  4  流体空穴湮灭问题的径向剖面图

    Figure  4.  Configuration for cavity annihilation in fluid

    图  5  空穴湮灭能量调整示意图

    Figure  5.  The configuration for energy adjustment

    表  1  不同爆炸区的特征能量因子[12]

    Table  1.   Characteristic energy factors of different explosion zones[12]

    爆炸分区空腔区破碎区径向裂纹区
    特征能量因子k10−310−510−7
    下载: 导出CSV
  • [1] KRAMARENKO V I, REVUZHENKO A F. Flow of energy in a deformed medium [J]. Soviet Mining, 1988, 24(6): 536–540. DOI: 10.1007/BF02498611.
    [2] REVUZHENKO A F, KLISHIN S V. Energy flux lines in a deformable rock mass with elliptical openings [J]. Journal of Mining Science, 2009, 45(3): 201–206. DOI: 10.1007/s10913-009-0026-5.
    [3] 钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010: 127–134.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010: 127–134.
    [4] ADUSHKIN V V, SPIVAK A. Underground explosions [M]. Lexington, MA: Weston Geophysical Corp, 2015: 431–480.
    [5] SADOVSKY M A, VOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic process [M]. Moscow: Science Press, 1987: 40–240.
    [6] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. Part II [J]. Journal of Mining Science, 2000, 36(4): 305–326. DOI: 10.1023/A:1026673105750.
    [7] 王明洋, 李杰, 李凯锐. 深部岩体非线性力学能量作用原理与应用 [J]. 岩石力学与工程学报, 2015, 34(4): 659–667. DOI: 10.13722/j.cnki.jrme.2015.04.002.

    WANG M Y, LI J, LI K R. A nonlinear mechanical energy theory in deep rock mass engineering and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 659–667. DOI: 10.13722/j.cnki.jrme.2015.04.002.
    [8] SHISHKIN N I. Seismic efficiency of a contact explosion and a high-velocity impact [J]. Journal of Applied Mechanics and Technical Physics, 2007, 48(2): 145–152. DOI: 10.1007/S10808-007-0019-6.
    [9] HASKELL N A. Analytic approximation for the elastic radiation from a contained underground explosion [J]. Journal of Geophysical Research, 1967, 72(10): 2583–2587. DOI: 10.1029/JZ072i010p02583.
    [10] SHISHKIN N I. On the problem of the disintegration of rock by an explosion under the influence of a free surface [J]. Journal of Applied Mechanics and Technical Physics, 1981, 22(3): 401–408. DOI: 10.1007/bf00907569.
    [11] 钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [12] 蒋海明. 深部岩体动力特征响应的理论与实验研究 [D]. 南京: 陆军工程大学, 2018: 28–29.
    [13] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part Ⅲ: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [14] 倪汉根, 刘亚坤. 水工建筑物的空化与空蚀 [M]. 大连: 大连理工大学出版社, 2011: 1–3.

    NI H G, LIU Y K. Cavitation and cavitation damage of Hydraulic structures [M]. Dalian: Dalian University of Technology Press, 2011: 1–3.
    [15] 杨桂通. 弹性力学 [M]. 北京: 高等教育出版社, 2003: 60–64.
    [16] 王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究 [J]. 岩石力学与工程学报, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.

    WANG M Y, CHEN H X, LI J, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in-situ observations [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209–2218. DOI: 10.13722/j.cnki.jrme.2018.0458.
    [17] 徐天涵, 李杰, 王明洋, 等. 地下核爆诱发工程性地震实测数据分析与不可逆变形范围计算 [J]. 爆炸与冲击, 2019, 39(12): 121101. DOI: 10.11883/bzycj-2018-0505.

    XU T H, LI J, WANG M Y, et al. Analysis of test data of underground nuclear explosions and calculation of irreversible deformation range [J]. Explosion and Shock Waves, 2019, 39(12): 121101. DOI: 10.11883/bzycj-2018-0505.
    [18] 陈昊祥, 王明洋, 李杰. 深部岩体变形破坏的特征能量因子与应用 [J]. 爆炸与冲击, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.

    CHEN H X, WANG M Y, LI J. A characteristic energy factor for deformation and failure of deep rock masses and its application [J]. Explosion and Shock Waves, 2019, 39(8): 081103. DOI: 10.11883/bzycj-2019-0191.
    [19] 李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题(Ⅱ): 冲击扰动诱发岩块滑移的物理模拟试验 [J]. 岩石力学与工程学报, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.

    LI J, JIANG H M, WANG M Y, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅱ: physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291–301. DOI: 10.13722/j.cnki.jrme.2017.0684.
    [20] 蒋海明, 李杰, 王明洋. 块系岩体滑移失稳中低摩擦效应的理论与试验研究 [J]. 岩土力学, 2019, 40(4): 1405–1412. DOI: 10.16285/j.rsm.2017.2223.

    JIANG H M, LI J, WANG M Y. Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405–1412. DOI: 10.16285/j.rsm.2017.2223.
    [21] 陈昊祥. 特征能量因子及其在工程灾变中的应用 [D]. 南京: 陆军工程大学, 2019: 147–154.
    [22] 朗道 Л Д, 栗弗席兹 E М. 流体动力学 [M]. 李植, 译. 5版. 北京: 高等教育出版社, 2012: 3–6.
    [23] STRUTT J W. On the pressure developed in a liquid during the collapse of a spherical cavity [M]//STRUTT J W. Scientific Papers. Cambridge: Cambridge University Press, 1920: 504–507. DOI: 10.1017/CBO9780511704017.076.
    [24] 陈昊祥, 王明洋, 戚承志, 等. 深部圆形巷道围岩能量的调整机制及平衡关系 [J]. 岩土工程学报, 2020, 42(10): 1849–1857. DOI: 10.11779/CJGE202010010.

    CHEN H X, WANG M Y, QI C Z, et al. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849–1857. DOI: 10.11779/CJGE202010010.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  27
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2025-09-08
  • 网络出版日期:  2025-09-17

目录

    /

    返回文章
    返回