• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

典型爆炸冲击载荷下T800碳纤维层合板的损伤特性

李天宇 冯晓伟 刘瑶璐 何丽灵 赵浩川 王守乾 聂源

李天宇, 冯晓伟, 刘瑶璐, 何丽灵, 赵浩川, 王守乾, 聂源. 典型爆炸冲击载荷下T800碳纤维层合板的损伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0505
引用本文: 李天宇, 冯晓伟, 刘瑶璐, 何丽灵, 赵浩川, 王守乾, 聂源. 典型爆炸冲击载荷下T800碳纤维层合板的损伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0505
LI Tianyu, FENG Xiaowei, LIU Yaolu, HE Liling, ZHAO Haochuan, WANG Shouqian, NIE Yuan. Damage characteristics of T800 CFRP laminates under typical impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0505
Citation: LI Tianyu, FENG Xiaowei, LIU Yaolu, HE Liling, ZHAO Haochuan, WANG Shouqian, NIE Yuan. Damage characteristics of T800 CFRP laminates under typical impacts[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0505

典型爆炸冲击载荷下T800碳纤维层合板的损伤特性

doi: 10.11883/bzycj-2024-0505
基金项目: 中物院院长基金(YZJJZQ2024007);国家自然科学基金(12102413)
详细信息
    作者简介:

    李天宇(1999- ),男,博士研究生,litianyu23@gscaep.ac.cn

    通讯作者:

    冯晓伟(1984- ),男,博士,副研究员,414fengxw@caep.cn

  • 中图分类号: O347.3; V258

Damage characteristics of T800 CFRP laminates under typical impacts

  • 摘要: 针对飞行器常用的碳纤维增强聚合物基复合材料层合板(carbon fiber-reinforced polymer,CFRP)抗冲击性能研究需求,对T800/3200 CFRP层合板进行球形破片侵彻试验与静爆试验,使用CT扫描技术与毁伤评估理论进行深入分析,研究了T800/3200 CFRP层合板在破片侵彻与爆炸冲击波2种典型载荷下的损伤特性与性能,并与航空制造业常用的2024-T3航空铝进行了试验对比。研究表明:T800/3200 CFRP层合板遭受球形破片侵彻后将产生近似台体的脱层失效区域,且失效区域的体积随着破片侵彻速度的增大而减小;T800/3200 CFRP层合板抵抗破片冲击载荷的能力不及航空铝板,吸收动能的能力约为航空铝板的一半;但其抗爆性能显著优于航空铝,在航行任务中更有助于保证飞行器的安全。
  • 图  1  破片载荷试验装置与场景

    Figure  1.  Penetration experiment scenario

    图  2  入射速度与剩余速度试验数据及拟合曲线

    Figure  2.  Incident and residual velocity data with fitting curves

    图  3  入射速度与动能损失关系

    Figure  3.  Relationship between incident velocity and energy loss

    图  4  入射速度与动能损失比例关系

    Figure  4.  Relationship between incident velocity and energy loss ratio

    图  5  各速度入射T800层合板破片致靶板各深度失效比率

    Figure  5.  Relationship between depth of CFRP plate and damage ratio

    图  6  各材质破片入射T800层合板破片致靶板各深度平均失效比率

    Figure  6.  Relationship between depth of CFRP plate and average damage ratio

    图  7  各速度入射破片致T800 CFRP靶板失效体积比率

    Figure  7.  Relationship between incident velocity and damage volume ratio of T800 CFRP plate

    图  8  冲击波载荷试验装置与场景

    Figure  8.  Shockwave load experiment scenario

    图  9  冲击波载荷试验各靶板处超压曲线

    Figure  9.  Overpressure curves in shockwave load experiment

    图  10  各靶板迎爆面形貌

    Figure  10.  Surface of each target plate upon impact

    图  11  参考试验平板宏观变形[31]

    Figure  11.  Macroscopic deformation of reference experimental plates[31]

    图  12  等效试验条件下2种靶板超压致挠信息

    Figure  12.  Deflection caused by overpressure on two types of target plates under equivalent experimental conditions

    表  1  T800/3200型CFRP靶板侵彻试验结果

    Table  1.   Fig.1 T800/3200 CFRP target plate penetration experimental results

    试验编号 破片材质 靶体材质 入射速度/(m·s−1) 剩余速度/(m·s−1)
    1 T800/3200 CFRP 41 未穿透
    2 T800/3200 CFRP 178 16
    3 T800/3200 CFRP 183 86
    4 T800/3200 CFRP 190 126
    5 T800/3200 CFRP 227 172
    6 T800/3200 CFRP 149 未穿透
    7 T800/3200 CFRP 179 9
    8 T800/3200 CFRP 184 106
    9 T800/3200 CFRP 228 169
    10 T800/3200 CFRP 299 248
    11 T800/3200 CFRP 508 468
    12 2024-T3航空铝 243 4
    13 2024-T3航空铝 368 284
    14 YG6钨钢 T800/3200 CFRP 182 103
    15 YG6钨钢 T800/3200 CFRP 230 144
    下载: 导出CSV

    表  2  层合板内部损伤CT扫描结果

    Table  2.   CT scan results of tested CFRP plates

    试验
    编号
    破片材质 入射速度/
    (m·s−1)
    剩余速度/
    (m·s−1)
    CT扫描形貌与深度/mm
    3 7.08 g钨珠 183 86
    0 1.01 2.23 2.84
    5 7.08 g钨珠 227 172
    0 0.5 1.52 2 2.4 3.5
    7 7.08 g钨珠 179 9
    0 0.6 1 1.51 2.2 2.7
    8 7.08 g钨珠 184 106
    0 0.42 0.86 1.27 1.71 2.13 2.37
    10 7.08 g钨珠 299 248
    0 0.6 1.2 1.8 2.5 3.2
    11 7.08 g钨珠 508 468
    0 1 1.6 2.5
    14 5.25 g
    YG6钨钢
    182 54
    0 0.5 1 1.5 2 2.5 3
    15 5.25 g
    YG6钨钢
    230 144
    0 0.5 1 1.5 2 2.5 3 3.5
    下载: 导出CSV

    表  3  RI弹道极限模型拟合结果

    Table  3.   Fitting results using RI ballistic limit model

    破片材质靶体材质拟合弹道极限速度/ (m·s−1)
    T800/3200 CFRP170
    243
    YG6钨钢T800/3200 CFRP174
    下载: 导出CSV

    表  4  各次试验破片动能损失

    Table  4.   Fragment kinetic energy loss for each experiment

    试验编号 弹体材质 靶板材质 初速度/(m·s−1) 剩余速度/(m·s−1) 初动能/J 剩余动能/J 动能损失/J
    1 T800/3200 CFRP 41 未穿透 5.95
    2 T800/3200 CFRP 178 16 112.16 0.91 111.26
    3 T800/3200 CFRP 183 86 118.55 26.18 92.37
    4 T800/3200 CFRP 190 126 127.79 56.20 71.59
    5 T800/3200 CFRP 227 172 182.41 104.73 77.69
    6 T800/3200 CFRP 149 未穿透 78.59
    7 T800/3200 CFRP 179 9 113.43 0.29 113.14
    8 T800/3200 CFRP 184 106 119.85 39.78 80.07
    9 T800/3200 CFRP 228 169 184.02 101.11 82.92
    10 T800/3200 CFRP 299 248 316.03 217.42 98.62
    11 T800/3200 CFRP 508 468 914.84 776.44 138.40
    12 2024-T3航空铝 243 4 208.74 0.06 208.68
    13 2024-T3航空铝 368 284 479.40 285.52 193.88
    14 YG6 T800/3200 CFRP 182 54 86.95 7.65 79.30
    15 YG6 T800/3200 CFRP 230 144 138.86 54.43 84.43
    下载: 导出CSV

    表  5  层合板内部损伤CT扫描后处理结果

    Table  5.   Post-process of CT scan results of tested CFRP plates

    试验编号 破片材质 入射速度/(m·s−1) 剩余速度/(m·s−1) CT扫描形貌与深度/mm
    3 7.08 g钨珠 183 86 不可用
    0 1.01 2.23 2.84
    5 7.08 g钨珠 227 172
    0 0.5 1.52 2 2.4 3.5
    7 7.08 g钨珠 179 9
    0 0.6 1 1.51 2.2 2.7
    8 7.08 g钨珠 184 106
    0 0.42 0.86 1.27 1.71 2.13 2.37
    10 7.08 g钨珠 299 248
    0 0.6 1.2 1.8 2.5 3.2
    11 7.08 g钨珠 508 468
    0 1 1.6 2.5
    14 5.25 g
    YG6钨钢
    182 54 不可用 不可用
    0 0.5 1 1.5 2 2.5 3
    15 5.25 g
    YG6钨钢
    230 144 不可用
    0 0.5 1 1.5 2 2.5 3 3.5
    下载: 导出CSV

    表  6  T800/3200型CFRP靶板冲击波载荷试验结果

    Table  6.   Test results in shockwave loading experiment of T800/3200 CFRP plate

    试验编号 距离/m 峰值超压/kPa 冲量/(kPa·ms)
    1 0.54 2231.29 21.51
    2 1.00 890.84 126.67
    3 1.46 268.87 73.64
    下载: 导出CSV

    表  7  CFRP靶板受冲击波载荷形貌

    Table  7.   Morphology of tested CFRP plates under shock wave loads

    试验编号 距离/m 最大挠度/mm 正面 反面 断裂形貌 脱层情况
    1 0.54 7.3
    2 1.00 3.0
    3 1.46 2.7
    下载: 导出CSV

    表  8  参考试验[31]设置与测量结果

    Table  8.   Setup and results of reference experiment[31]

    参考试验编号装药量/g爆距/mm最大挠度/mm
    A160175完全破坏
    A26017564.61
    A36024048.24
    A46017563.58
    A56030045.45
    B18017573.74
    B28024056.87
    B380175完全破坏
    B48030043.69
    B58030035.09
    下载: 导出CSV

    表  9  参考试验超压与等效后挠度

    Table  9.   Overpressure and equivalent deflection of reference experiment

    参考试验编号 装药量/g 爆距/mm 对比距离/ (m·kg−1/3) 理论超压/MPa 最大挠度/mm 等效最大挠度/mm
    A1 60 175 0.44701 3.53758 完全破坏
    A2 60 175 0.44701 3.53758 64.61 158.40
    A3 60 240 0.61305 1.81211 48.24 118.27
    A4 60 175 0.44701 3.53758 63.58 155.88
    A5 60 300 0.76631 1.20206 45.45 111.43
    B1 80 175 0.40614 4.42033 73.74 180.79
    B2 80 240 0.55699 2.19613 56.87 139.43
    B3 80 175 0.40614 4.42033 完全破坏
    B4 80 300 0.69624 1.42507 43.69 107.11
    B5 80 300 0.69624 1.42507 35.09 86.03
    下载: 导出CSV
  • [1] 吕淑扬, 郑凯, 赵英男, 等. 碳纤维增强复合材料在航空航天领域的应用 [J]. 聚酯工业, 2024, 37(3): 71–73. DOI: 10.3969/j.issn.1008-8261.2024.03.022.

    LV S Y, ZHENG K, ZHAO Y N, et al. Application of carbon fiber reinforced composite materials in the aerospace field [J]. Polyester Industry, 2024, 37(3): 71–73. DOI: 10.3969/j.issn.1008-8261.2024.03.022.
    [2] 郑学搏. 飞机结构中碳纤维复合材料的应用研究 [J]. 中国设备工程, 2023(7): 92–94. DOI: 10.3969/j.issn.1671-0711.2023.07.039.

    ZHENG X B. Application of carbon fiber reinforced composite materials in aircraft structures [J]. China Plant Engineering, 2023(7): 92–94. DOI: 10.3969/j.issn.1671-0711.2023.07.039.
    [3] 贺福, 孙微. 碳纤维复合材料在大飞机上的应用 [J]. 高科技纤维与应用, 2007, 32(6): 5–8,17. DOI: 10.3969/j.issn.1007-9815.2007.06.002.

    HE F, SUN W. The application of carbon fiber composite materials in giant plane [J]. Hi-Tech Fiber & Application, 2007, 32(6): 5–8,17. DOI: 10.3969/j.issn.1007-9815.2007.06.002.
    [4] 钱鑫, 王雪飞, 马洪波, 等. 国内外PAN基高模量碳纤维的技术现状与研究进展 [J]. 合成纤维工业, 2021, 44(5): 58–64. DOI: 10.3969/j.issn.1001-0041.2021.05.012.

    QIAN X, WANG X F, MA H B, et al. Technology status and research progress of PAN-based high-modulus carbon fibers in China and abroad [J]. China Synthetic Fiber Industry, 2021, 44(5): 58–64. DOI: 10.3969/j.issn.1001-0041.2021.05.012.
    [5] 冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法 [J]. 高压物理学报, 2019, 33(4): 045101. DOI: 10.11858/gywlxb.20180687.

    FENG X W, LU Y G, LI Y Z. Damage assessment method of aircraft targets under blast wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045101. DOI: 10.11858/gywlxb.20180687.
    [6] 梅志伟, 余慧敏, 刘小磊, 等. 国外巡飞防空武器现状及发展研究 [J]. 空天防御, 2024, 7(3): 40–45. DOI: 10.3969/j.issn.2096-4641.2024.03.005.

    MEI Z W, YU H M, LIU X L, et al. Research on the current status and development of foreign patrol air defense weapons [J]. Air & Space Defense, 2024, 7(3): 40–45. DOI: 10.3969/j.issn.2096-4641.2024.03.005.
    [7] 洪诗婷. T300碳纤维的表面处理及力学性能研究 [D]. 上海: 东华大学, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000115.

    HONG S T. Surface treatment and mechanical properties of T300 carbon fiber [D]. Shanghai: Donghua University, 2020. DOI: 10.27012/d.cnki.gdhuu.2020.000115.
    [8] 刘亮, 颜会全, 王芬, 等. 国内外T700级碳纤维及其复合材料的性能 [J]. 高科技纤维与应用, 2019, 44(6): 28–32. DOI: 10.3969/j.issn.1007-9815.2019.06.005.

    LIU L, YAN H Q, WANG F, et al. Study on properties of T700 grade carbon fiber and its composite materials at home and abroad [J]. Hi-Tech Fiber Application, 2019, 44(6): 28–32. DOI: 10.3969/j.issn.1007-9815.2019.06.005.
    [9] CHEN W M, YU Y H, LI P, et al. Effect of new epoxy matrix for T800 carbon fiber/epoxy filament wound composites [J]. Composites Science and Technology, 2007, 67(11/12): 2261–2270. DOI: 10.1016/j.compscitech.2007.01.026.
    [10] NETTLES A T, GUIN W E, MAVO J P, et al. Damage tolerance comparison of IM7/8552 and T1100/3960 carbon fiber/epoxy sandwich structure in support of the space launch system payload adapter fitting: NASA/TM-20230005376 [R]. Huntsville: NASA, 2023.
    [11] NAIK N K, SHRIRAO P. Composite structures under ballistic impact [J]. Composite Structures, 2004, 66(1/2/3/4): 579–590. DOI: 10.1016/j.compstruct.2004.05.006.
    [12] BRESCIANI L M, MANES A, GIGLIO M. An analytical model for ballistic impacts against plain-woven fabrics with a polymeric matrix [J]. International Journal of Impact Engineering, 2015, 78: 138–149. DOI: 10.1016/j.ijimpeng.2015.01.001.
    [13] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of Ultra High molecular weight polyethylene composite [J]. International Journal of Impact Engineering, 2015, 75: 174–183. DOI: 10.1016/j.ijimpeng.2014.07.008.
    [14] 董高雄, 毕莹, 李向东. 球形破片侵彻碳纤维复合材料层合板的理论和试验研究 [J]. 振动与冲击, 2024, 43(17): 100–109. DOI: 10.13465/j.cnki.jvs.2024.17.012.

    DONG G X, BI Y, LI X D. Theoretical and test investigation of spherical fragments penetrating carbon fiber composite laminates [J]. Journal of Vibration and Shock, 2024, 43(17): 100–109. DOI: 10.13465/j.cnki.jvs.2024.17.012.
    [15] 丛超男, 朱文清, 刘俊杰, 等. 纤维增强复合材料弹道极限速度理论与数值模型研究进展 [J]. 科学通报, 2024, 69(22): 3238–3251. DOI: 10.1360/TB-2024-0399.

    CONG C N, ZHU W Q, LIU J J, et al. Advances in analytical and numerical models for ballistic limits of fiber-reinforced composites [J]. Chinese Science Bulletin, 2024, 69(22): 3238–3251. DOI: 10.1360/TB-2024-0399.
    [16] 邓云飞, 袁家俊, 徐建新. 半球形头弹不同角度冲击下编织复合材料板的侵彻特性 [J]. 复合材料学报, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.

    DENG Y F, YUAN J J, XU J X. Penetration characteristics of woven composite laminates impacted by hemispherical-nosed projectiles at different angles [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 843–849. DOI: 10.13801/j.cnki.fhclxb.20170704.002.
    [17] 王佳富. 低速冲击下的碳纤维增强复合材料层合板损伤特性研究 [D]. 长沙: 湖南大学, 2023. DOI: 10.27135/d.cnki.ghudu.2023.004323.

    WANG J F. Study on damage characteristics of carbon fiber reinforced composite laminates under low velocity impact [D]. Changsha: Hunan University, 2023. DOI: 10.27135/d.cnki.ghudu.2023.004323.
    [18] 周俊杰, 王生楠. 复合材料层合板低速冲击渐进损伤模型 [J]. 西北工业大学学报, 2021, 39(1): 37–45. DOI: 10.1051/jnwpu/20213910037.

    ZHOU J J, WANG S N. A progressive damage model of composite laminates under low-velocity impact [J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 37–45. DOI: 10.1051/jnwpu/20213910037.
    [19] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. DOI: 10.1115/1.3153664.
    [20] LANGDON G S, LEE W C, LOUCA L A. The influence of material type on the response of plates to air-blast loading [J]. International Journal of Impact Engineering, 2015, 78: 150–160. DOI: 10.1016/j.ijimpeng.2014.12.008.
    [21] LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: A state-of-the-art [J]. International Materials Reviews, 2014, 59(3): 159–177. DOI: 10.1179/1743280413Y.0000000028.
    [22] COLES L A, TILTON C, ROY A, et al. Dynamic damage in woven carbon/epoxy composites due to air blast [J]. Procedia Structural Integrity, 2017, 6: 5–10. DOI: 10.1016/j.prostr.2017.11.002.
    [23] COLES L A, TILTON C, ROY A, et al. Dynamic fracture in carbon-fibre composites: air-blast loading [J]. Procedia Structural Integrity, 2016, 2: 417–421. DOI: 10.1016/j.prostr.2016.06.054.
    [24] 解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板态响应数值分析方法 [J]. 应用数学和力学, 2017, 38(4): 410–420. DOI: 10.21656/1000-0887.370252.

    XIE J, LI H, ZHOU S T, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads [J]. Applied Mathematics and Mechanics, 2017, 38(4): 410–420. DOI: 10.21656/1000-0887.370252.
    [25] 周逃林. 层合复合材料冰雹和硬物冲击损伤研究 [D]. 南京: 南京航空航天大学, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000345.

    ZHOU T L. Study on damage of composite laminate experienced impactions of hail and rigid impactor [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. DOI: 10.27239/d.cnki.gnhhu.2019.000345.
    [26] 李厚伯. 冲击载荷作用下碳纤维增强复合材料层合板的动力学响应研究 [D]. 重庆: 重庆大学, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.000599.

    LI H B. Dynamic response of carbon fiber reinforced composite laminates according to impact load [D]. Chongqing: Chongqing University, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.000599.
    [27] 尚晓壮, 刘瑶璐, 冯晓伟, 等. 冰球和钨珠非正冲击下T800-CFRP层合板损伤特性的研究 [J]. 振动与冲击, 2024, 43(11): 135–147. DOI: 10.13465/j.cnki.jvs.2024.11.016.

    SHANG X Z, LIU Y L, FENG X W, et al. Damage characteristics of T800-CFRP laminates under non-normal impact of ice balls and tungsten beads [J]. Journal of Vibration and Shock, 2024, 43(11): 135–147. DOI: 10.13465/j.cnki.jvs.2024.11.016.
    [28] RECHT R F, IPSON T W. Ballistic Perforation Dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384. DOI: 10.1115/1.3636566.
    [29] 卢涛. 碳纤维复合材料层合板动态力学性能及抗弹机理研究 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000701.

    LU T. Dynamic mechanical properties and anti-ballistic mechanism of carbon fiber composite laminates [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000701.
    [30] ABRATE S. Impact on laminated composite materials [J]. Applied Mechanics Reviews., 1991, 44(4): 155–190. DOI: 10.1115/1.3119500.
    [31] 郑金国, 周书婷, 解江, 等. 爆炸载荷作用下2024-T3铝合金板动态响应试验研究 [J]. 装备制造技术, 2017(2): 127–130. DOI: 10.3969/j.issn.1672-545X.2017.02.038.

    ZHENG J G, ZHOU S T, XIE J, et al. Experimental method for dynamic response of 2024-T3 aluminum alloy plate under blast load [J]. Equipment Manufacturing Technology, 2017(2): 127–130. DOI: 10.3969/j.issn.1672-545X.2017.02.038.
    [32] 王树山. 终点效应学 [M]. 2版. 北京: 科学出版社, 2019.

    WANG S S. Terminal effects [M]. 2nd ed. Beijing: Science Press, 2019.
    [33] 徐芝纶. 弹性力学(下册) [M]. 4版. 北京: 高等教育出版社, 2006.

    XU Z L. Elasticity (Vol II) [M]. 4th ed. Beijing: High Education Press, 2006.
    [34] 钟阳, 李锐, 刘月梅. 四边固支矩形弹性薄板的精确解析解 [J]. 力学季刊, 2009, 30(2): 297–303. DOI: 10.15959/j.cnki.0254-0053.2009.02.010.

    ZHONG Y, LI R, LIU Y M. Exact analytic solution of rectangular thin plate with four edges clamped [J]. Chinese Quarterly of Mechanics, 2009, 30(2): 297–303. DOI: 10.15959/j.cnki.0254-0053.2009.02.010.
  • 加载中
图(12) / 表(9)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  39
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-10-16

目录

    /

    返回文章
    返回