• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

大尺度复杂环境下的强爆炸冲击波传播数值模拟技术研究

寿列枫 祝文军 李秦超 马龙 姚成宝

寿列枫, 祝文军, 李秦超, 马龙, 姚成宝. 大尺度复杂环境下的强爆炸冲击波传播数值模拟技术研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0511
引用本文: 寿列枫, 祝文军, 李秦超, 马龙, 姚成宝. 大尺度复杂环境下的强爆炸冲击波传播数值模拟技术研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0511
SHOU Liefeng, ZHU Wenjun, LI Qinchao, MA Long, YAO Chengbao. Numerical schemes of intensive blast wave propagation in large scale complex enviroments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0511
Citation: SHOU Liefeng, ZHU Wenjun, LI Qinchao, MA Long, YAO Chengbao. Numerical schemes of intensive blast wave propagation in large scale complex enviroments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0511

大尺度复杂环境下的强爆炸冲击波传播数值模拟技术研究

doi: 10.11883/bzycj-2024-0511
详细信息
    作者简介:

    寿列枫(1980- ),男,博士研究生,副研究员,shouliefeng@nint.ac.cn

    通讯作者:

    姚成宝(1984- ),男,博士,副研究员,yaocheng@pku.edu.cn

  • 中图分类号: O382.1

Numerical schemes of intensive blast wave propagation in large scale complex enviroments

  • 摘要: 为实现大尺度复杂空间范围内强爆炸冲击波的高效数值模拟。基于扩散界面多组分模型,建立适用于极端条件、任意多介质相互作用的可压缩多相流数值方法,并结合人工智能技术,提出一种具有MUSCL-THINC-BVD特征的且兼具鲁棒性、低耗散、高效率重构方法。该方法能够在激波、接触间断和物质界面等关键区域自适应选择最优重构方式,实现全局数值耗散最小化,同时较传统BVD(boundary variation diminishing)框架下的格式具有更高的计算效率。进一步结合全球地理信息系统,发展了自动化几何建模与网格剖分技术、网格自适应及大规模并行计算方法,从而能够高效处理网格规模达数十亿、压力范围覆盖103~1015 Pa、模拟区域不小于10 km的大尺度复杂城市环境中的强爆炸冲击波问题。通过对复杂地形及真实城市建筑条件下冲击波传播过程的完整数值模拟,验证了数值方法可靠性。
  • 图  1  deepMTBVD模板示意图

    Figure  1.  Schematic diagram of deepMTBVD stencils

    图  2  网格自适应的悬点情况及解决策略

    Figure  2.  Hanging nodes in adaptive mesh refinement and solution strategy

    图  3  MPI+OpenMP混合并行编程模式

    Figure  3.  Hybrid parallel programming model of MPI+OpenMP

    图  4  工况1的数值解与参考解的对比

    Figure  4.  The Comparison of condition 1 between numerical solution and reference data

    图  5  工况2的数值解与参考解的对比

    Figure  5.  The Comparison of condition 2 between numerical solution and reference data

    图  6  空中强爆炸典型时刻的压力云图

    Figure  6.  Pressure contours of air blast at typical time

    图  7  地面不同距离处的冲击波参数

    Figure  7.  Blast wave parameters on the ground at different radii

    图  8  空中强爆炸冲击波在复杂地形传播典型时刻的压力云图(压力单位:Pa)

    Figure  8.  Typical pressure contours of blast wave in complex grounds

    图  9  空中强爆炸冲击波在城市环境传播典型时刻的压力云图(压力单位:Pa)

    Figure  9.  Typical pressure contours of blast wave in urban enviroments

    表  1  一维激波管数值算例的初值条件

    Table  1.   Initial conditions of one-dimensional shock tube problems

    工况 ρl/(kg·m−3) ul/(m·s−1) pl/Pa ρr/(kg·m−3) ur/(m·s−1) pr/Pa
    1 1.0 0.75 1.0 0.125 0.0 0.1
    2 1.0 0.0 1000 0.0 0.0 0.01
    下载: 导出CSV
  • [1] WANG X, REMOTIGUE M, ARBOLDUS Q, et al. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy [J]. Shock Waves, 2017, 27(3): 409–422. DOI: 10.1007/s00193-016-0694-4.
    [2] RATCLIFF A, RIGBY S, CLARKE S, et al. A review of blast loading in the urban environment [J]. Applied Sciences-Basel, 2023, 13(9): 5301. DOI: 10.3390/app13095301.
    [3] VALSAMOS G, LARCHER M, CASADEI F. Beirut explosion 2020: A case study for a large-scale urban blast simulation [J]. Safety Science, 2021, 137: 105181. DOI: 10.1016/j.ssci.2020.105181.
    [4] JIMENEZ C P, FICA M M, QUINTANA J D. Identification of geometrical design criteria for reducing the vulnerability of urban area configurations to blast effects [C]. COST Action C26 International Conference on Urban Habitat Constructions Under Catastrophic Events. 2010: 955-960.
    [5] DENNY J, LANGDON G, RIGBY S, et al. A numerical investigation of blast-structure interaction effects on primary blast injury risk and the suitability of existing injury prediction methods [J]. International Journal of Protective Structures, 2024, 15(1): 3–22. DOI: 10.1177/20414196231224218.
    [6] SWISDAK M. Simplified kingery airblast calculations [M]. USA: Naval Surface Warfare Center, 1994.
    [7] BRITT J, RANTA D, JOACHIM C. Shock user’s manual version 4.2 [M]. USA: BlastX Code, 2001.
    [8] HYDE D. Conwep: Application and fundamentals of protective design for conventional weapons [M]. USA: US Army Corps of Engineers, 1992.
    [9] SHI Y C, LIU S Z, LI Z X, et al. Review on quick safety assessment of building structures in complex urban environment after extreme explosion events [J]. International Journal of Protective Structures, 2023, 14(3): 438–458. DOI: 10.1177/20414196231172563.
    [10] FOUCHIER C, LABOUREUR D, YOUINOU L, et al. Experimental investigation of blast wave propagation in an urban environment [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 5–10. DOI: 10.1016/j.jlp.2017.05.003.
    [11] 殷文骏, 童念雪, 程帅, 等. 爆炸驱动激波管冲击波压力参数研究 [J]. 现代应用物理, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2095-6223.2024.021003.

    YIN W J, TONG N X, CHENG S, et al. Shock wave pressure parameters of blast-driven shock tube [J]. Modern Applied Physics, 2024, 15(2): 021003. DOI: 10.12061/j.issn.2095-6223.2024.021003.
    [12] 张亮永, 卢强, 王同东, 等. 近地面爆源参数的贝叶斯声震联合反演方法 [J]. 现代应用物理, 2024, 15(2): 021004. DOI: 10.12061/j.issn.2095-6223.2024.021004.

    ZHANG L Y, LU Q, WANG T D, et al. Bayesian method for acoustic-seismic joint inversion of near-surface explosion parameters [J]. Modern Applied Physics, 2024, 15(2): 021004. DOI: 10.12061/j.issn.2095-6223.2024.021004.
    [13] 王志凯, 梁永辉, 戴伯达, 等. 近自由液面聚能战斗部水下爆炸威力场 [J]. 现代应用物理, 2024, 15(2): 021005. DOI: 10.12061/j.issn.2095-6223.2024.021005.

    WANG Z K, LIANG Y H, DAI B D, et al. Underwater explosion power field of near-free surface shaped charge warhead [J]. Modern Applied Physics, 2024, 15(2): 021005. DOI: 10.12061/j.issn.2095-6223.2024.021005.
    [14] DRAZIN W. Blast propagation and damage in urban topographies [D]. UK: University of Cambridge, 2018. DOI: 10.17863/CAM.23456.
    [15] REMENNIKOV A. A review of methods for predicting bomb blast effects on buildings [J]. Journal of Battlefield Technology, 2003, 6(3): 5–10.
    [16] SMITH P D, ROSE T A. Blast wave propagation in city streets-an overview [J]. Structural Safety and Reliability, 2006, 8(1): 16–28. DOI: 10.1016/j.strusafe.2005.09.001.
    [17] HAO H, HAO Y, LI J, et al. Review of the current practices in blast resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1–31. DOI: 10.1177/1369433216653842.
    [18] BIRNBAUM N K, COWLER M S, ITOH M, et al. AUTODYN-an interactive non-linear dynamic analysis program for microcomputers through supercomputers [M]. Netherlands: Balkema, 1987.
    [19] CREPEAU J E, NEEDHAM C E. Verification and validation of SHAMRC for nonideal airblast (NIAB) phenomenology [R]. USA: Defense Threat Reduction Agency, 2010.
    [20] NOBLE C R, ANDERSON A T, BARTON N, et al. *ALE3D: An arbitrary lagrangian-eulerian multi-physics code* [R]. USA: Lawrence Livermore National Laboratory, 2017. DOI: 10.2172/1375584.
    [21] JEFFREY H, PETER V, TIMOTHY B. BlastFoam version 6.0 User Guide [M]. USA: BlastFoam Consortium, 2022.
    [22] KEVIN S, FABIEN P, SEBASTIEN L E, et al. ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows [J]. Computer Physics Communications, 2020, 251: 107093. DOI: 10.1016/j.cpc.2019.107093.
    [23] FU M Y, LI R, LU T, et al. A hybrid fluid-solid interaction scheme combining the multi-component diffuse interface method and the material point method [J]. Communications in Computational Physics, 2022, 32(5): 23–49. DOI: 10.4208/cicp.OA-2022-0001.
    [24] CHEN L, LI R, YAO C B. An approximate solver for multi-medium Riemann problem with Mie-Gruneisen equations of state [J]. Research in the Mathematical Sciences, 2018, 5(3): 31–59. DOI: 10.1007/s40687-018-0151-3.
    [25] GUO Y H, LI R, YAO C B. A numerical method on Eulerian grids for two-phase compressible flow [J]. Advances in Applied Mathematics and Mechanics, 2016, 8(2): 187–212. DOI: 10.4208/aamm.2014.m697.
    [26] ZEIN A, HANTKE M, WARNECKE G. Modeling phase transition for compressible two-phase flows applied to meta stable liquids [J]. Journal of Computational Physics, 2010, 229(12): 2964–2998. DOI: 10.1016/j.jcp.2010.01.001.
    [27] SAUREL R, PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows [J]. Annual Review of Fluid Mechanics, 2018, 50: 105–130. DOI: 10.1146/annurev-fluid-122316-050109.
    [28] BAER M, NUNZIATO J. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials [J]. Journal of Multiphase Flow, 1986, 12(5): 861–889. DOI: 10.1016/0301-9322(86)90017-0.
    [29] SAINSAULIEU L. Finite volume approximation of two phase-fluid flows based on an approximate Roe-type Riemann solver [J]. Journal of Computational Physics, 1995, 121(4): 1–28. DOI: 10.1006/jcph.1995.1201.
    [30] SAUREL R, PETITPAS F, BERRY R A. Simple and efficient relaxation methods for interfaces separating compressible fluids. Cavitating flows and shocks in multiphase mixture [J]. Journal of Computational Physics, 2009, 228(1): 1678–1712. DOI: 10.1016/j.jcp.2008.11.002.
    [31] SAUREL R, PETITPAS F. Modelling phase transition in metastable liquids: application to cavitating and flashing flows [J]. Journal of Fluid Mechanics, 2008, 607: 313–350. DOI: 10.1017/S0022112008002061.
    [32] PELANTI M, SHYUE K M. A mixture-energy-consistent six-equation two-phase numerical model for fluid with interfaces, cavitation and evaporation waves [J]. Journal of Computational Physics, 2014, 259: 331–357. DOI: 10.1016/j.jcp.2013.12.011.
    [33] PELANTI M, SHYUE K M. A numerical model for multiphase liquid-vapor gas flows with interfaces and cavitation [J]. International Journal of Multiphase Flow, 2019, 113: 208–230. DOI: 10.1016/j.ijmultiphaseflow.2018.10.012.
    [34] KAPILA A, MENIKOFF R, BDZIL J, et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations [J]. Physics of Fluids, 2001, 13(9): 3002–3024. DOI: 10.1063/1.1398042.
    [35] ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181(1): 577–616. DOI: 10.1006/jcph.2002.7143.
    [36] GARRICK D P, OWKES M, REGELE J D. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension [J]. Journal of Computational Physics, 2017, 339: 46–67. DOI: 10.1016/j.jcp.2017.03.012.
    [37] ZHANG J. A simple and effective five-equation two-phase numerical model for liquid-vapor phase transition in cavitating flows [J]. International Journal of Multiphase Flow, 2020, 132: 301–322. DOI: 10.1016/j.ijmultiphaseflow.2020.103348.
    [38] ABGRALL R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach [J]. Journal of Computational Physics, 1996, 125(1): 150–160. DOI: 10.1006/jcph.1996.0085.
    [39] JOHNSEN E, HAM F. Preventing numerical errors generated by interface capturing schemes in compressible multi-material flows [J]. Journal of Computational Physics, 2012, 231(4): 5705–5717. DOI: 10.1016/j.jcp.2012.04.043.
    [40] MOVAHED P, JOHNSEN E. A solution adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability [J]. Journal of Computational Physics, 2013, 239: 166–186. DOI: 10.1016/j.jcp.2012.12.007.
    [41] SCARDOVELLI R, ZALESKI S. Direct numerical simulation of free-surface and interfacial flow [J]. Annual Review of Fluid Mechanics, 1999, 31: 567–603. DOI: 10.1146/annurev.fluid.31.1.567.
    [42] NOH W F, WOODWARD P. SLIC (Simple line interface calculation) [C]// Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Berlin: Springer, 1976: 330–340. DOI: 10.1007/BFb0019743.
    [43] SETHIAN J A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts [J]. Journal of Computational Physics, 2001, 169(2): 503–555. DOI: 10.1006/jcph.2000.6544.
    [44] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114(1): 146–159. DOI: 10.1006/jcph.1994.1155.
    [45] AHN H T, SHASHKOV M. Multi-material interface reconstruction on generalized polyhedral meshes [J]. Journal of Computational Physics, 2007, 226(2): 2096–2132. DOI: 10.1016/j.jcp.2007.06.029.
    [46] DYADECHKO V, SHASHKOV D M. Reconstruction of multi-material interfaces from moment data [J]. Journal of Computational Physics, 2008, 227(11): 5361–5384. DOI: 10.1016/j.jcp.2008.01.041.
    [47] ANBARLOOEI H R, MAZAHERI K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(47): 3782–3794. DOI: 10.1016/j.cma.2009.08.013.
    [48] GLIMM J, GROVE J W, LI X L. Three-dimensional front tracking [J]. SIAM Journal on Scientific Computing, 1998, 19(3): 703–727. DOI: 10.1137/S1064827595293600.
    [49] TRYGGVASON G, BUNNER B, ESMAEELI A. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
    [50] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1987, 71(2): 231–303. DOI: 10.1016/0021-9991(87)90031-3.
    [51] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes [J]. Journal of Computational Physics, 1988, 77(2): 439–471. DOI: 10.1016/0021-9991(88)90177-5.
    [52] JIANG J S, SHU C W. Efficient implementation of Weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
    [53] SHU C W. High order weighted essentially nonoscillatory schemes for convection dominated problems [J]. SIAM Review, 2009, 51(1): 82–126. DOI: 10.1137/070679065.
    [54] SHUKLA R K, PANTANO C, FREUND J B. An interface capturing method for the simulation of multi-phase compressible flows [J]. Journal of Computational Physics, 2010, 229(10): 7411–7439. DOI: 10.1016/j.jcp.2010.06.025.
    [55] SHUKLA R K. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows [J]. Journal of Computational Physics, 2014, 276: 508–540. DOI: 10.1016/j.jcp.2014.07.038.
    [56] NGUYEN V T, PHAN T H, PARK W G. Numerical modeling of multiphase compressible flows with the presence of shock waves using an interface-sharpening five-equation model [J]. International Journal of Multiphase Flow, 2021, 135: 301–322. DOI: 10.1016/j.ijmultiphaseflow.2020.103512.
    [57] TIWARI A, FREUND J B, PANTANO C. A diffuse interface model with immiscibility preservation [J]. Journal of Computational Physics, 2013, 252: 290–309. DOI: 10.1016/j.jcp.2013.06.018.
    [58] CHIAPOLINO A, SAUREL R, NKONGA B. Sharpening diffuse interfaces with compressible fluids on unstructured meshes [J]. Journal of Computational Physics, 2017, 340: 389–417. DOI: 10.1016/j.jcp.2017.03.056.
    [59] HEWITT E S. The Gibbs-Wilbraham phenomenon: An episode in fourier analysis [J]. Archive for History of Exact Sciences, 1979, 21: 129–160. DOI: 10.1007/BF00330404.
    [60] XIAO F, HONMA Y, KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function [J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023–1040. DOI: 10.1002/fld.975.
    [61] XIAO F, CHEN L D. Revisit to the thinc scheme: A simple algebraic VOF algorithm [J]. Journal of Computational Physics, 2011, 230(19): 7086–7092. DOI: 10.1016/j.jcp.2011.05.030.
    [62] XIE B, XIAO F. Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature [J]. Journal of Computational Physics, 2017, 349: 415–440. DOI: 10.1016/j.jcp.2017.08.006.
    [63] CHENG L D, DENG X, XIE B, et al. Low-dissipation bvd schemes for single and multi-phase compressible flows on unstructured grids [J]. Journal of Computational Physics, 2021, 428: 109092. DOI: 10.1016/j.jcp.2020.109092.
    [64] DENG X, INABA S, XIE B, et al. High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces [J]. Journal of Computational Physics, 2018, 371: 945–966. DOI: 10.1016/j.jcp.2018.05.038.
    [65] WAKIMURA H, TAKAGI S, XIAO F. Symmetry-preserving enforcement of low-dissipation method based on boundary variation diminishing principle [J]. Computers & Fluids, 2022, 233: 105219. DOI: 10.1016/j.compfluid.2021.105219.
    [66] DENG X, SHIMIZU Y, XIAO F. A fifth-order shock capturing scheme with two stage boundary variation diminishing algorithm [J]. Journal of Computational Physics, 2019, 386: 323–349. DOI: 10.1016/j.jcp.2019.02.009.
    [67] HUANG M S, CHENG L D, YING W J. A structure-preserving reconstruction scheme for compressible single- and multi-phase flows based on artificial neural networks [J]. Journal of Computational Physics, 2024, 499: 112345. DOI: 10.1016/j.jcp.2023.112345.
    [68] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. USA: Lawrence Radiation Laboratory, 1968. DOI: 10.2172/4783904.
    [69] 李秦超, 姚成宝, 程帅, 等. 神经网络状态方程在强爆炸冲击波数值模拟中的应用 [J]. 爆炸与冲击, 2023, 43(4): 1–11. DOI: 10.11883/bzycj-2022-0423.

    LI Q C, YAO C B, CHENG S, et al. Application of the neural network equation of state in numerical simulation of intense blast wave [J]. Explosion and Shock Waves, 2023, 43(4): 1–11. DOI: 10.11883/bzycj-2022-0423.
    [70] GLASSTONE S, DOLAN P J. Effects of nuclear weapons [M]. USA: United States Department of Defense, 1977: 453–501.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  17
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-06-04
  • 网络出版日期:  2025-05-26

目录

    /

    返回文章
    返回