• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

泡沫铝夹芯结构抗鸟体冲击吸能机理及在飞机 机头端框挡板中的应用

张柱国 吴志斌 王家栋 王怡 黄甲 崔浩 李玉龙

张柱国, 吴志斌, 王家栋, 王怡, 黄甲, 崔浩, 李玉龙. 泡沫铝夹芯结构抗鸟体冲击吸能机理及在飞机 机头端框挡板中的应用[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0046
引用本文: 张柱国, 吴志斌, 王家栋, 王怡, 黄甲, 崔浩, 李玉龙. 泡沫铝夹芯结构抗鸟体冲击吸能机理及在飞机 机头端框挡板中的应用[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0046
ZHANG Zhuguo, WU Zhibin, WANG Jiadong, WANG Yi, HUANG Jia, CUI Hao, LI Yulong. Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0046
Citation: ZHANG Zhuguo, WU Zhibin, WANG Jiadong, WANG Yi, HUANG Jia, CUI Hao, LI Yulong. Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0046

泡沫铝夹芯结构抗鸟体冲击吸能机理及在飞机 机头端框挡板中的应用

doi: 10.11883/bzycj-2025-0046
基金项目: 国家自然科学基金(12472082);中国商飞国家商用飞机制造工程技术研究中心创新基金项目(COMAC-SFGS-2023-2356)
详细信息
    作者简介:

    张柱国(1982- ),男,博士研究生,zhangzhuguo_hd@caac.gov.cn

    通讯作者:

    黄 甲(1991- ),男,副教授,博士生导师,jia.huang@nwpu.edu.cn

  • 中图分类号: O389; V215.2

Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose

  • 摘要: 针对现役民用飞机铝合金加筋结构机头端框挡板存在的轻量化不足问题,在深入探究泡沫铝夹芯结构抗鸟体冲击吸能机理的基础上,提出了一种新型泡沫铝夹层挡板结构。该结构采用非对称面板设计,高塑性2024-T3铝合金作为上面板,高强度7075-T6铝合金作为下面板,中间填充泡沫铝芯层,用以替代传统铝合金加筋板,旨在保证优异抗鸟撞性能的同时显著减轻结构重量。首先通过铝合金平板的高速鸟体撞击试验,验证了鸟体本构模型及接触算法的有效性,结合参数反演与仿真算例,验证了泡沫铝材料本构模型的准确性与适用性;进一步,利用Pam-crash软件对加筋板结构与泡沫铝夹芯结构端框进行了鸟撞瞬态冲击动力学仿真,对比分析了二者的冲击响应特性与能量吸收机理差异。研究表明:加筋板主要依靠塑性变形来吸收鸟撞能量,而泡沫铝夹芯结构则通过芯层的压缩坍塌失效、上面板的塑性大变形机制协同吸收能量;优化后的泡沫铝夹芯结构在能量吸收效率方面显著优于传统加筋板结构;基于泡沫铝夹芯结构的吸能特性,完成了覆盖挡板全区域的优化设计方案;基于全覆盖鸟撞冲击仿真结果,所提出的泡沫铝夹芯挡板设计方案在保持与现役结构同等抗鸟撞性能的前提下,减轻了30%以上的结构重量。
  • 图  1  空气炮试验装置

    Figure  1.  Air gun test device

    图  2  靶板

    Figure  2.  Target

    图  3  铝合金平板鸟撞仿真有限元模型

    Figure  3.  Finite element model of bird impact on aluminum alloy plate

    图  4  鸟撞平板过程试验与仿真模拟过程对比图

    Figure  4.  Comparison diagram of the bird-striking plate process test and simulation process

    图  5  试验中应变片1和4处的应变数据对比

    Figure  5.  Comparison of strain data at positions of strain gauge 1 and 4

    图  6  均质泡沫压缩仿真有限元模型

    Figure  6.  Finite element model of homogeneous foam compression simulation

    图  7  均质泡沫试验与仿真结果对比

    Figure  7.  Comparison of homogeneous foam test and simulation results

    图  8  梯度泡沫压缩仿真有限元模型

    Figure  8.  Finite element model of gradient foam compression simulation

    图  9  梯度泡沫试验与仿真结果对比

    Figure  9.  Comparison of gradient foam test and simulation results

    图  10  机头端框模型

    Figure  10.  Nose bulkhead model

    图  11  加筋挡板

    Figure  11.  Reinforced Bulkhead

    图  12  泡沫铝夹芯结构

    Figure  12.  Foam aluminum sandwich structure

    图  13  鸟体有限元模型

    Figure  13.  Finite element model of bird body

    图  14  夹芯结构C的应力云图

    Figure  14.  Stress contour diagram of sandwich structure C

    图  15  加筋板、夹芯结构A和夹芯结构B的应力响应云图

    Figure  15.  Stress response contours of stiffened plates, sandwich structure A and sandwich structure B

    图  16  三种挡板结构及其组成部分在鸟撞冲击下的能量吸收曲线

    Figure  16.  The energy absorption curve of three types of baffle structures and their components

    图  17  泡沫铝失效区域的正视图与侧面剖视图

    Figure  17.  Front view and side section view of failure area of aluminum foam

    图  18  鸟撞全覆盖冲击点位

    Figure  18.  Bird strikes cover the full impact point

    图  19  横向工字梁的位置图

    Figure  19.  Position diagram of horizontal I-beam

    表  1  两种铝合金材料参数

    Table  1.   Material parameters for two aluminum alloys

    材料号 E/GPa 泊松比 a/MPa b/MPa n D/s−1 p εfail
    2024-T3 72 0.31 280 400 0.2 1 66.67 0.18
    7075-T6 71 0.35 480 400 0.28 1 1000 0.12
    下载: 导出CSV

    表  2  不同构型和厚度的挡板参数

    Table  2.   Baffle parameters for different configurations and thicknesses

    材料号上面板下面板芯体总质量/kg
    夹芯结构A2024_57075_0.50.2_1525.97
    夹芯结构B2024_27075_0.50.1_1512.16
    夹芯结构C7075_27075_0.50.1_1512.16
    加筋板整体结构为2024-T3铝合金26.26
    下载: 导出CSV

    表  3  夹芯泡沫铝的参数优化表

    Table  3.   Parameter optimization table of sandwich aluminum foam

    序号 厚度/mm 夹芯重量/
    kg
    上、下面板的面
    密度/(kg·m−2)
    是否破坏
    击穿
    上面板 夹芯 下面板
    1 1.0 25 3.0 19.82 12.60
    2 1.5 25 0.5
    3 0.5 20 0.5
    4 1.0 20 1.5
    5 1.0 20 2.0
    6 1.0 20 2.5
    7 1.5 20 0.5
    8 1.5 20 1.0
    9 1.5 20 1.5
    10 1.5 20 2.0
    11 1.5 20 2.5
    12 1.0 15 3.0 18.49 14.16
    13 1.5 15 1.0
    14 1.5 15 1.5
    15 2.0 15 0.5 12.16 7.83
    16 1.5 10 1.0
    17 1.5 10 1.5 12.31 9.43
    下载: 导出CSV

    表  4  各组件质量分配

    Table  4.   Quality distribution of each component

    结构面板泡沫铝芯体局部加强组件总质量原加筋板减重
    质量/kg7.824.665.3917.8726.268.39
    下载: 导出CSV
  • [1] 周加良. 飞机鸟撞事故分析、预防及建议 [J]. 宁波大学学报, 1994, 7(1): 16–23.

    ZHOU J L. Analysis and prevention and suggestion on plane-bird collision [J]. Journal of Ningbo University, 1994, 7(1): 16–23.
    [2] 李玉龙, 石霄鹏. 民用飞机鸟撞研究现状 [J]. 航空学报, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.

    LI Y L, SHI X P. Investigation of the present status of research on bird impacting on commercial airplanes [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.
    [3] DOLBEER R, BEGIER M, MILLER P, et al. Wildlife strikes to civil aircraft in the United States, 1990-2019: serial report number 26 [R]. Washington: Federal Aviation Administration, 2021.
    [4] NIERING E. Simulation of bird strikes on turbine engines [J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(4): 573–578. DOI: 10.1115/1.2906207.
    [5] LANGRAND B, BAYART A S, CHAUVEAU Y, et al. Assessment of multi-physics FE methods for bird strike modelling-application to a metallic riveted airframe [J]. International Journal of Crashworthiness, 2002, 7(4): 415–428. DOI: 10.1533/cras.2002.0227.
    [6] HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering, 2006, 32(7): 1127–1144. DOI: 10.1016/j.ijimpeng.2004.09.004.
    [7] ENSAN M N, ZIMCIK D G, LAHOUBI M, et al. Soft body impact simulation on composite structures [J]. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32(2): 283–296. DOI: 10.1139/tcsme-2008-0018.
    [8] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. DOI: 10.1016/j.ijimpeng.2009.03.009.
    [9] WAN X P, WANG W Z, ZHAO M Y. Bird impact analysis of wing leading edge structure based on SPH method [J]. Key Engineering Materials, 2011, 462/463: 524–529. DOI: 10.4028/www.scientific.net/KEM.462-463.524.
    [10] GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge [J]. Composite Structures, 2008, 86(1/2/3): 258–268. DOI: 10.1016/j.compstruct.2008.03.025.
    [11] 刘军, 李玉龙, 徐绯. 基于PAM-CRASH的鸟撞飞机风挡动响应分析 [J]. 爆炸与冲击, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.

    LIU J, LI Y L, XU F. Dynamic response analysis of bird-impact aircraft windshields based on PAM-CRASH [J]. Explosion and Shock Waves, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.
    [12] 贾建东, 李志强, 杨建林, 等. 用SPH和有限元方法研究鸟撞飞机风挡问题 [J]. 航空学报, 2010, 31(1): 136–142.

    JIA J D, LI Z Q, YANG J L, et al. A study of bird impact on aircraft windshield using SPH and finite element method [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 136–142.
    [13] 毋玲, 郭英男, 李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析 [J]. 爆炸与冲击, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.

    WU L, GUO Y N, LI Y L. Bird strike simulation on the sandwich composite structure of aircraft radome [J]. Explosion and Shock Waves, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.
    [14] 中华人民共和国工业和信息化部. HB 7084-2014 民用飞机结构抗鸟撞设计与试验通用要求 [S]. 北京: 中国航空综合技术研究所, 2014.

    Ministry of Industry and Information Technology. HB 7084-2014 General requirements for civil airplane bird-strike design and test [S]. Beijing: China Aviation Composite Technology Research Institute, 2014.
    [15] 林晓虎, 杨庆生. 航空航天夹层结构抗冲击性能的研究现状 [J]. 航空制造技术, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.

    LIN X H, YANG Q S. Research review on anti-impact property of sandwich structures in aerospace [J]. Aeronautical Manufacturing Technology, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.
    [16] 肖锋, 谌勇, 章振华, 等. 夹层结构冲击动力学研究综述 [J]. 振动与冲击, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.

    XIAO F, CHEN Y, ZHANG Z H, et al. A review of studying on impact dynamics of sandwich structures [J]. Journal of Vibration and Shock, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.
    [17] 刘培生, 李铁藩, 傅超, 等. 多孔金属材料的应用 [J]. 功能材料, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.

    LIU P S, LI T F, FU C, et al. Applications of porous metal materials [J]. Journal of Functional Materials, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.
    [18] 陈祥, 李言祥. 金属泡沫材料研究进展 [J]. 材料导报, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.

    CHEN X, LI Y X. Porous metals: research advances and applications [J]. Materials Reports, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.
    [19] KARSANDIK Y, SABUNCUOGLU B, YILDIRIM B, et al. Impact behavior of sandwich composites for aviation applications: a review [J]. Composite Structures, 2023, 314: 116941. DOI: 10.1016/j.compstruct.2023.116941.
    [20] HUO X T, SUN G Y, ZHANG H Y, et al. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core [J]. Composite Structures, 2019, 223: 110835. DOI: 10.1016/j.compstruct.2019.04.007.
    [21] 杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.

    YANG F, WANG Z H, ZHAO L M. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels [J]. Science Technology and Engineering, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.
    [22] 方志威, 侯海量, 张元豪, 等. 中高速弹体侵彻下泡沫铝夹芯结构抗侵彻性能实验研究 [J]. 舰船科学技术, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.

    FANG Z W, HOU H L, ZHANG Y H, et al. Experimental investigation on aluminum foam sandwich structure under medium and high velocity bullet impact [J]. Ship Science and Technology, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.
    [23] TANG E L, ZHANG X Q, HAN Y F. Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact [J]. Journal of Materials Research and Technology, 2019, 8(5): 4620–4630. DOI: 10.1016/j.jmrt.2019.08.006.
    [24] 张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.

    ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
    [25] MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates – part 1: material modelling [J]. Applied Composite Materials, 2004, 11(5): 295–315. DOI: 10.1023/B:ACMA.0000037133.64496.13.
    [26] LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike [J]. International Journal of Impact Engineering, 2017, 105: 89–101. DOI: 10.1016/j.ijimpeng.2016.12.017.
    [27] ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials: a unified framework of plastic shock wave models [J]. International Journal of Impact Engineering, 2013, 53: 29–43. DOI: 10.1016/j.ijimpeng.2012.06.012.
    [28] ZHANG Y, HE S Y, LIU J G, et al. Density gradient tailoring of aluminum foam-filled tube [J]. Composite Structures, 2019, 220: 451–459. DOI: 10.1016/j.compstruct.2019.04.026.
    [29] 牛卫晶. 冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究 [D]. 太原: 太原理工大学, 2015. DOI: 10.7666/d.Y2798431.

    NIU W J. Research on the penetration behavior of sandwich protective structures with aluminum foam cores under impact loading [D]. Taiyuan: Taiyuan University of Technology, 2015. DOI: 10.7666/d.Y2798431.
    [30] 黄苏南, 丁圆圆, 王士龙, 等. 闭孔泡沫铝动态材料参数的实验研究 [J]. 实验力学, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.

    HUANG S N, DING Y Y, WANG S L, et al. Experimental investigation on dynamic material parameters of closed-cell aluminium foam [J]. Journal of Experimental Mechanics, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.
    [31] 吕怡楠. 梯度泡沫铝的结构调控及冲击性能研究 [D]. 南京: 东南大学, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.

    LV Y N. Gradient regulation and impact properties of density-graded aluminum foam [D]. Nanjing: Southeast University, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.
    [32] BUDGEY R. The development of a substitute artificial bird by the international bird strike research group for use in aircraft component testing [C]//Proceedings of International Bird Strike Committee 25. Amsterdam, 2000: 17–21.
    [33] 刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.

    LIU J, LI Y L, LIU Y Y. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  70
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-18
  • 修回日期:  2025-07-27
  • 网络出版日期:  2025-08-10

目录

    /

    返回文章
    返回