Energy absorption mechanism of aluminum foam sandwich structure against bird impact and its application in impact protection bulkhead inside airplane nose
-
摘要: 针对现役民用飞机铝合金加筋结构机头端框挡板存在的轻量化不足问题,在深入探究泡沫铝夹芯结构抗鸟体冲击吸能机理的基础上,提出了一种新型泡沫铝夹层挡板结构。该结构采用非对称面板设计,高塑性2024-T3铝合金作为上面板,高强度
7075 -T6铝合金作为下面板,中间填充泡沫铝芯层,用以替代传统铝合金加筋板,旨在保证优异抗鸟撞性能的同时显著减轻结构重量。首先通过铝合金平板的高速鸟体撞击试验,验证了鸟体本构模型及接触算法的有效性,结合参数反演与仿真算例,验证了泡沫铝材料本构模型的准确性与适用性;进一步,利用Pam-crash软件对加筋板结构与泡沫铝夹芯结构端框进行了鸟撞瞬态冲击动力学仿真,对比分析了二者的冲击响应特性与能量吸收机理差异。研究表明:加筋板主要依靠塑性变形来吸收鸟撞能量,而泡沫铝夹芯结构则通过芯层的压缩坍塌失效、上面板的塑性大变形机制协同吸收能量;优化后的泡沫铝夹芯结构在能量吸收效率方面显著优于传统加筋板结构;基于泡沫铝夹芯结构的吸能特性,完成了覆盖挡板全区域的优化设计方案;基于全覆盖鸟撞冲击仿真结果,所提出的泡沫铝夹芯挡板设计方案在保持与现役结构同等抗鸟撞性能的前提下,减轻了30%以上的结构重量。Abstract: In response to the insufficient lightweight issue of the baffle plate for the nose end frame with an aluminum alloy stiffened structure in active civil aircraft, a new type of aluminum foam sandwich baffle structure is proposed based on an in-depth exploration of the energy absorption mechanism of aluminum foam sandwich structures against bird impact. This innovative design employs an asymmetric panel configuration that includes a highly ductile 2024-T3 aluminum alloy upper face sheet, a high-strength7075 -T6 aluminum alloy lower face sheet, and an aluminum foam core layer in between. It replaces the traditional aluminum alloy stiffened panel, aiming to significantly reduce structural weight while ensuring excellent bird strike resistance. First, the effectiveness of the bird body constitutive model and its contact algorithm was verified by comparing the high-speed bird body impact test on aluminum alloy flat plates with the simulated strain data. Based on previous experimental data, combined with parameter inversion and simulation cases, the simulation data of homogeneous and gradient aluminum foams are in good agreement with the test results, which verifies the accuracy and applicability of the aluminum foam material constitutive model. Furthermore, using the professional Pam-crash software, transient impact dynamics simulations of bird strikes were conducted on both the stiffened panel structure and the aluminum foam sandwich structure end frame. Combined with the damage and deformation conditions of each component and energy absorption data, a comparative analysis was made on the differences in their impact response characteristics and energy absorption mechanisms. The study shows that the stiffened panel mainly absorbs the energy of bird body impact through its plastic deformation, while the aluminum foam sandwich structure absorbs energy synergistically through the compressive collapse failure of the core layer and the large plastic deformation mechanism of the upper face sheet. The optimized aluminum foam sandwich structure is significantly superior to the traditional stiffened panel structure in terms of energy absorption efficiency. Subsequently, a full-coverage optimization design scheme for the baffle was completed based on the energy absorption characteristics of the aluminum foam sandwich structure. According to the full-coverage bird impact simulation results, the proposed aluminum foam sandwich baffle design achieves a structural weight reduction of more than 30% while maintaining the same bird strike resistance performance as the in-service structure. This research provides reliable technical references and innovative ideas for the lightweight bird strike-resistant design of the civil aircraft nose bulkhead.-
Key words:
- aluminum foam /
- sandwich structure /
- absorption mechanism /
- bird strike /
- nose bulkhead
-
表 1 两种铝合金材料参数
Table 1. Material parameters for two aluminum alloys
材料号 E/GPa 泊松比 a/MPa b/MPa n D/s−1 p εfail 2024-T3 72 0.31 280 400 0.2 1 66.67 0.18 7075 -T671 0.35 480 400 0.28 1 − 1000 0.12 表 2 不同构型和厚度的挡板参数
Table 2. Baffle parameters for different configurations and thicknesses
材料号 上面板 下面板 芯体 总质量/kg 夹芯结构A 2024_5 7075 _0.50.2_15 25.97 夹芯结构B 2024_2 7075 _0.50.1_15 12.16 夹芯结构C 7075 _27075 _0.50.1_15 12.16 加筋板 整体结构为2024-T3铝合金 26.26 表 3 夹芯泡沫铝的参数优化表
Table 3. Parameter optimization table of sandwich aluminum foam
序号 厚度/mm 夹芯重量/
kg上、下面板的面
密度/(kg·m−2)是否破坏
击穿上面板 夹芯 下面板 1 1.0 25 3.0 19.82 12.60 否 2 1.5 25 0.5 是 3 0.5 20 0.5 是 4 1.0 20 1.5 是 5 1.0 20 2.0 是 6 1.0 20 2.5 是 7 1.5 20 0.5 是 8 1.5 20 1.0 是 9 1.5 20 1.5 是 10 1.5 20 2.0 是 11 1.5 20 2.5 是 12 1.0 15 3.0 18.49 14.16 否 13 1.5 15 1.0 是 14 1.5 15 1.5 是 15 2.0 15 0.5 12.16 7.83 否 16 1.5 10 1.0 是 17 1.5 10 1.5 12.31 9.43 否 表 4 各组件质量分配
Table 4. Quality distribution of each component
结构 面板 泡沫铝芯体 局部加强组件 总质量 原加筋板 减重 质量/kg 7.82 4.66 5.39 17.87 26.26 8.39 -
[1] 周加良. 飞机鸟撞事故分析、预防及建议 [J]. 宁波大学学报, 1994, 7(1): 16–23.ZHOU J L. Analysis and prevention and suggestion on plane-bird collision [J]. Journal of Ningbo University, 1994, 7(1): 16–23. [2] 李玉龙, 石霄鹏. 民用飞机鸟撞研究现状 [J]. 航空学报, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005.LI Y L, SHI X P. Investigation of the present status of research on bird impacting on commercial airplanes [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189–198. DOI: 11-1929/V.20111031.1057.005. [3] DOLBEER R, BEGIER M, MILLER P, et al. Wildlife strikes to civil aircraft in the United States, 1990-2019: serial report number 26 [R]. Washington: Federal Aviation Administration, 2021. [4] NIERING E. Simulation of bird strikes on turbine engines [J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(4): 573–578. DOI: 10.1115/1.2906207. [5] LANGRAND B, BAYART A S, CHAUVEAU Y, et al. Assessment of multi-physics FE methods for bird strike modelling-application to a metallic riveted airframe [J]. International Journal of Crashworthiness, 2002, 7(4): 415–428. DOI: 10.1533/cras.2002.0227. [6] HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering, 2006, 32(7): 1127–1144. DOI: 10.1016/j.ijimpeng.2004.09.004. [7] ENSAN M N, ZIMCIK D G, LAHOUBI M, et al. Soft body impact simulation on composite structures [J]. Transactions of the Canadian Society for Mechanical Engineering, 2008, 32(2): 283–296. DOI: 10.1139/tcsme-2008-0018. [8] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. DOI: 10.1016/j.ijimpeng.2009.03.009. [9] WAN X P, WANG W Z, ZHAO M Y. Bird impact analysis of wing leading edge structure based on SPH method [J]. Key Engineering Materials, 2011, 462/463: 524–529. DOI: 10.4028/www.scientific.net/KEM.462-463.524. [10] GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge [J]. Composite Structures, 2008, 86(1/2/3): 258–268. DOI: 10.1016/j.compstruct.2008.03.025. [11] 刘军, 李玉龙, 徐绯. 基于PAM-CRASH的鸟撞飞机风挡动响应分析 [J]. 爆炸与冲击, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05.LIU J, LI Y L, XU F. Dynamic response analysis of bird-impact aircraft windshields based on PAM-CRASH [J]. Explosion and Shock Waves, 2009, 29(1): 80–84. DOI: 10.11883/1001-1455(2009)01-0080-05. [12] 贾建东, 李志强, 杨建林, 等. 用SPH和有限元方法研究鸟撞飞机风挡问题 [J]. 航空学报, 2010, 31(1): 136–142.JIA J D, LI Z Q, YANG J L, et al. A study of bird impact on aircraft windshield using SPH and finite element method [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 136–142. [13] 毋玲, 郭英男, 李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析 [J]. 爆炸与冲击, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06.WU L, GUO Y N, LI Y L. Bird strike simulation on the sandwich composite structure of aircraft radome [J]. Explosion and Shock Waves, 2009, 29(6): 642–647. DOI: 10.11883/1001-1455(2009)06-0642-06. [14] 中华人民共和国工业和信息化部. HB 7084-2014 民用飞机结构抗鸟撞设计与试验通用要求 [S]. 北京: 中国航空综合技术研究所, 2014.Ministry of Industry and Information Technology. HB 7084-2014 General requirements for civil airplane bird-strike design and test [S]. Beijing: China Aviation Composite Technology Research Institute, 2014. [15] 林晓虎, 杨庆生. 航空航天夹层结构抗冲击性能的研究现状 [J]. 航空制造技术, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021.LIN X H, YANG Q S. Research review on anti-impact property of sandwich structures in aerospace [J]. Aeronautical Manufacturing Technology, 2013(10): 71–74. DOI: 10.16080/j.issn1671-833x.2013.10.021. [16] 肖锋, 谌勇, 章振华, 等. 夹层结构冲击动力学研究综述 [J]. 振动与冲击, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005.XIAO F, CHEN Y, ZHANG Z H, et al. A review of studying on impact dynamics of sandwich structures [J]. Journal of Vibration and Shock, 2013, 32(18): 1–7,20. DOI: 10.13465/j.cnki.jvs.2013.18.005. [17] 刘培生, 李铁藩, 傅超, 等. 多孔金属材料的应用 [J]. 功能材料, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004.LIU P S, LI T F, FU C, et al. Applications of porous metal materials [J]. Journal of Functional Materials, 2001, 32(1): 12–15. DOI: 10.3321/j.issn:1001-9731.2001.01.004. [18] 陈祥, 李言祥. 金属泡沫材料研究进展 [J]. 材料导报, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002.CHEN X, LI Y X. Porous metals: research advances and applications [J]. Materials Reports, 2003, 17(5): 5–8,11. DOI: 10.3321/j.issn:1005-023X.2003.05.002. [19] KARSANDIK Y, SABUNCUOGLU B, YILDIRIM B, et al. Impact behavior of sandwich composites for aviation applications: a review [J]. Composite Structures, 2023, 314: 116941. DOI: 10.1016/j.compstruct.2023.116941. [20] HUO X T, SUN G Y, ZHANG H Y, et al. Experimental study on low-velocity impact responses and residual properties of composite sandwiches with metallic foam core [J]. Composite Structures, 2019, 223: 110835. DOI: 10.1016/j.compstruct.2019.04.007. [21] 杨飞, 王志华, 赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005.YANG F, WANG Z H, ZHAO L M. Numerical simulation on anti-penetration performance of aluminum foam-based sandwich panels [J]. Science Technology and Engineering, 2011, 11(15): 3377–3383. DOI: 10.3969/j.issn.1671-1815.2011.15.005. [22] 方志威, 侯海量, 张元豪, 等. 中高速弹体侵彻下泡沫铝夹芯结构抗侵彻性能实验研究 [J]. 舰船科学技术, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003.FANG Z W, HOU H L, ZHANG Y H, et al. Experimental investigation on aluminum foam sandwich structure under medium and high velocity bullet impact [J]. Ship Science and Technology, 2017, 39(6): 12–17. DOI: 10.3404/j.issn.1672-7619.2017.06.003. [23] TANG E L, ZHANG X Q, HAN Y F. Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact [J]. Journal of Materials Research and Technology, 2019, 8(5): 4620–4630. DOI: 10.1016/j.jmrt.2019.08.006. [24] 张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232. [25] MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates – part 1: material modelling [J]. Applied Composite Materials, 2004, 11(5): 295–315. DOI: 10.1023/B:ACMA.0000037133.64496.13. [26] LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike [J]. International Journal of Impact Engineering, 2017, 105: 89–101. DOI: 10.1016/j.ijimpeng.2016.12.017. [27] ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials: a unified framework of plastic shock wave models [J]. International Journal of Impact Engineering, 2013, 53: 29–43. DOI: 10.1016/j.ijimpeng.2012.06.012. [28] ZHANG Y, HE S Y, LIU J G, et al. Density gradient tailoring of aluminum foam-filled tube [J]. Composite Structures, 2019, 220: 451–459. DOI: 10.1016/j.compstruct.2019.04.026. [29] 牛卫晶. 冲击载荷下泡沫铝夹芯防护结构的侵彻动力学行为研究 [D]. 太原: 太原理工大学, 2015. DOI: 10.7666/d.Y2798431.NIU W J. Research on the penetration behavior of sandwich protective structures with aluminum foam cores under impact loading [D]. Taiyuan: Taiyuan University of Technology, 2015. DOI: 10.7666/d.Y2798431. [30] 黄苏南, 丁圆圆, 王士龙, 等. 闭孔泡沫铝动态材料参数的实验研究 [J]. 实验力学, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211.HUANG S N, DING Y Y, WANG S L, et al. Experimental investigation on dynamic material parameters of closed-cell aluminium foam [J]. Journal of Experimental Mechanics, 2018, 33(6): 851–861. DOI: 10.7520/1001-4888-17-211. [31] 吕怡楠. 梯度泡沫铝的结构调控及冲击性能研究 [D]. 南京: 东南大学, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987.LV Y N. Gradient regulation and impact properties of density-graded aluminum foam [D]. Nanjing: Southeast University, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000987. [32] BUDGEY R. The development of a substitute artificial bird by the international bird strike research group for use in aircraft component testing [C]//Proceedings of International Bird Strike Committee 25. Amsterdam, 2000: 17–21. [33] 刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019.LIU J, LI Y L, LIU Y Y. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90–93,185. DOI: 10.13465/j.cnki.jvs.2008.09.019. -


下载: