• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高速破片撞击燃油箱导致的燃油喷溅特性

陈安然 陈海华 余曜 卞付国 于浩杰 李向东

陈安然, 陈海华, 余曜, 卞付国, 于浩杰, 李向东. 高速破片撞击燃油箱导致的燃油喷溅特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0100
引用本文: 陈安然, 陈海华, 余曜, 卞付国, 于浩杰, 李向东. 高速破片撞击燃油箱导致的燃油喷溅特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0100
CHEN Anran, CHEN Haihua, YU Yao, BIAN Fuguo, YU Haojie, LI Xiangdong. Study of the characteristics of fuel spurt caused by high-velocity fragment impact the fuel tank[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0100
Citation: CHEN Anran, CHEN Haihua, YU Yao, BIAN Fuguo, YU Haojie, LI Xiangdong. Study of the characteristics of fuel spurt caused by high-velocity fragment impact the fuel tank[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0100

高速破片撞击燃油箱导致的燃油喷溅特性

doi: 10.11883/bzycj-2025-0100
基金项目: 国防科技基础加强计划技术领域基金(2020-JCJQ-JJ-401);国家自然科学基金(11572159);江苏省研究生科研与实践创新计划(KYCX19_0329,KYCX19_0330)
详细信息
    作者简介:

    陈安然(1995- ),女,博士,工程师,chenar2016@163.com

    通讯作者:

    李向东(1969— ),男,博士,教授,lixiangd@njust.edu.cn

  • 中图分类号: O358

Study of the characteristics of fuel spurt caused by high-velocity fragment impact the fuel tank

  • 摘要: 高速破片撞击燃油箱时产生液压水锤效应,其引发的燃油喷溅可能导致燃油箱引燃甚至爆炸,从而降低高价值目标的生存能力。为研究液压水锤效应导致的燃油喷溅特性,进行了高速破片撞击模拟燃油箱的试验,测试并分析了喷溅燃油的速度特性和空间分布特性;提出了液团初始运动速度v0与液团发散速度的概念,在此基础上建立了描述喷溅燃油时空分布的理论模型;根据侵彻孔口的裂纹情况和孔边缘金属材料的形状变化,并考虑液体内压力分布的影响,对流量系数Cv的取值进行分类:当v0≤737 m/s时,Cv的取值范围为0.60~0.70;当737 m/s<v0<906 m/s时,Cv的取值范围为0.25~0.55;当v0≥906 m/s时,Cv的取值范围为0.75~0.95。研究表明,燃油喷溅轴向距离的理论计算结果与试验结果平均误差在15%以内,修正后的径向距离理论计算结果与试验结果误差在5%左右,即理论模型计算结果可较好复现试验结果。
  • 图  1  液压水锤效应的5个阶段

    Figure  1.  5 Phases of hydrodynamic ram

    图  2  瞬态液体喷溅与空腔变化的对应关系[8]

    Figure  2.  The corresponding relationship between liquid spurt and cavity evolution [8]

    图  3  压力在流体中的分布规律[20]

    Figure  3.  Distribution of pressure in the fluid [20]

    图  4  试验现场布置

    Figure  4.  Test setup

    图  5  长方体模拟燃油箱的框架及安装组件

    Figure  5.  Frame and components of the liquid-filled container.

    图  6  侵彻孔形状(左:前面板,右:后面板)

    Figure  6.  Shape of penetration orifices (left: front panel, right: rear panel)

    图  7  液体喷溅速度随时间变化、拟合结果及拟合参数变化规律

    Figure  7.  Variation regular of liquid spurt velocity with time, fitting results and fitting parameters

    图  8  式(1)计算结果与试验结果的对比

    Figure  8.  Comparison of calculation results of eq. (1) and test results

    图  9  拟合参数与撞击速度的关系

    Figure  9.  The relationship of the fitting parameters with impact velocity

    图  10  式(2)计算结果与试验结果对比

    Figure  10.  Comparison of calculation results of eq. (2) and experimental results

    图  11  喷溅速度衰减率

    Figure  11.  Velocity of the attenuation rate of liquid spurt

    图  12  燃油从侵彻孔喷出的简化过程

    Figure  12.  Simplified process of fuel spurts from orifice

    图  13  燃油液团运动过程及参数

    Figure  13.  The movement process and parameters of fuel spurt

    图  14  空腔动力学演化(v0 = 1251 m/s)[15]

    Figure  14.  The cavity dynamics evolution (v0 = 1251 m/s) [15]

    图  15  燃油喷溅过程(v0=1251 m/s)[15]

    Figure  15.  The fuel spurt proceed (v0=1251 m/s) [15]

    图  16  喷溅液体分布理论结果与试验结果对比(v0=1251 m/s,前面板处第1次喷溅)

    Figure  16.  Comparison of theoretical and experimental results of distribution of liquid spurt (v0=1251 m/s, first spurt at front panel)

    图  17  喷溅液体分布理论结果与试验结果对比(v0=1251 m/s,前面板处第2次喷溅)

    Figure  17.  Comparison of theoretical and experimental results of distribution of liquid spurt (v0=1251 m/s, second spurt at front panel)

    图  18  喷溅液体分布理论结果与试验结果对比(v0=996 m/s,前面板处第1次喷溅)

    Figure  18.  Comparison of theoretical and experimental results of distribution of liquid spurt (v0=996 m/s, first spurt at front panel)

    图  19  喷溅液体分布理论结果与试验结果对比(v0=996 m/s,前面板处第2次喷溅)

    Figure  19.  Comparison of theoretical and experimental results of distribution of liquid spurt (v0=996 m/s, second spurt at front panel)

    表  1  破片撞击燃油箱的液体喷溅速度试验结果

    Table  1.   Test results of liquid spurt velocity of fragment impacting the fuel tank

    v0/(m·s−1 ur/(m·s−1 ud/(m·s−1 vs/(m·s−1
    第1次喷溅 第2次喷溅
    577 71 506 56 44
    609 92 517 79 94
    737 163 574 48 94
    777 150 627 43 39
    854 253 601 54 26
    866 220 646 32 35
    906 265 641 45 51
    996 284 712 100 78
    1109 308 801 50 51
    1117 324 793 112 55
    1251 340 911 113 89
    下载: 导出CSV

    表  2  破片撞击速度与液体喷溅速度试验与理论结果

    Table  2.   Experimental and theoretical results of the velocity of fragment and liquid spurt

    v0/(m·s−1) vs1/(m·s−1) 误差/% vs2/(m·s−1) 误差/%
    试验结果 理论结果 试验结果 理论结果
    609 79 82.79 4.80 94 79.78 −17.99
    737 48 46.78 −2.54 94 100.12 12.75
    777 43 42.890 −0.24 39 48.51 22.11
    854 54 53.92 −0.15 26 26.85 1.57
    866 32 29.57 −7.61 35 34.63 −1.16
    906 45 45.11 0.25 51 62.08 24.61
    996 100 111.89 11.89 78 59.85 −18.15
    1109 50 59.02 18.04 51 49.57 −2.87
    1117 112 118.78 6.06 55 75.23 18.06
    1251 113 118.29 4.68 89 79.59 −8.33
    下载: 导出CSV
  • [1] DISIMILE P J, DAVIS J M, PYLES J M. Qualitative assessment of a transient spray caused by a hydrodynamic ram event [J]. Journal of Flow Visualization and Image Processing, 2007, 14(3): 287–303. DOI: 10.1615/JFlowVisImageProc.v14.i3.30.
    [2] YANG H Q. A multiphase and multiphysics CFD technique for fuel spurt prediction with cavitation and fluid-structure interaction [C]//Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Dallas: AIAA, 2015. DOI: 10.2514/6.2015-3419.
    [3] ARTERO-GUERRERO J A, VARAS D, PERNAS-SÁNCHEZ J, et al. Experimental analysis of an attenuation method for hydrodynamic ram effects [J]. Materials & Design, 2018, 155: 451–462. DOI: 10.1016/j.matdes.2018.06.020.
    [4] JI Y Z Y, LI X D, ZHOU L W, et al. Experimental and numerical study on the cumulative damage of water-filled containers impacted by two projectiles [J]. Thin-Walled Structures, 2019, 135: 45–64. DOI: 10.1016/j.tws.2018.10.043.
    [5] SELVARATHINAM A S, STEWART M W, ENGELSTAD S P, et al. Application of progressive damage failure analysis to large aircraft composite structures [C]//Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2018. DOI: 10.2514/6.2018-2235.
    [6] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(6): 821–829. DOI: 10.1016/j.ijimpeng.2008.12.009.
    [7] DISIMILE P J, TOY N. Liquid spurt caused by hydrodynamic ram [J]. International Journal of Impact Engineering, 2015, 75: 65–74. DOI: 10.1016/j.ijimpeng.2014.08.001.
    [8] LINGENFELTER A J, LIU D, REEDER M F. Time resolved flow field measurements of orifice entrainment during a hydrodynamic ram event [J]. Journal of Visualization, 2017, 20(1): 63–74. DOI: 10.1007/s12650-016-0378-2.
    [9] BESTARD J, BUCK M, KOCHER B, et al. Hydrodynamic ram model development - survivability analysis requirements [C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu: AIAA, 2012. DOI: 10.2514/6.2012-1504.
    [10] YANG H Q, YANG S, DISIMILE P. A validation study of hydrodynamic RAM and fuel spurt using CFD tool [C]//Proceedings of AIAA SCITECH 2020 Forum. Orlando: AIAA, 2020. DOI: 10.2514/6.2020-0356.
    [11] 赵一霖, 严立, 来霄毅, 等. 新一代四机并联火箭发动机喷流热环境数值研究 [J]. 空天防御, 2023, 6(1): 109–116. DOI: 10.3969/j.issn.2096-4641.2023.01.017.

    ZHAO Y L, YAN L, LAI X Y, et al. Numerical study on thermal environment of a new generation of four-parallel rocket engine jet [J]. Air & Space Defense, 2023, 6(1): 109–116. DOI: 10.3969/j.issn.2096-4641.2023.01.017.
    [12] 安国琛, 李仁俊, 臧月进, 等. 基于有限元方法的液体火箭发动机主动冷却技术研究 [J]. 空天防御, 2018, 1(3): 56–60. DOI: 10.3969/j.issn.2096-4641.2018.03.011.

    AN G C, LI R J, ZANG Y J, et al. Active cooling technology of liquid rocket engine based on finite element [J]. Air & Space Defense, 2018, 1(3): 56–60. DOI: 10.3969/j.issn.2096-4641.2018.03.011.
    [13] KELLER J B, MIKSIS M. Bubble oscillations of large amplitude [J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628–633. DOI: 10.1121/1.384720.
    [14] CHEN A R, LI X D, ZHOU L W, et al. Study of liquid spurt caused by hydrodynamic ram in liquid-filled container [J]. International Journal of Impact Engineering, 2020, 144: 103658. DOI: 10.1016/j.ijimpeng.2020.103658.
    [15] CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the cavity evolution and liquid spurt of hydrodynamic ram [J]. Defence Technology, 2022, 18(11): 2008–2022. DOI: 10.1016/j.dt.2021.09.002.
    [16] 陈安然, 李向东, 周兰伟, 等. 液压水锤效应引起液体喷溅特性及其影响因素试验研究 [J]. 国防科技大学学报, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.

    CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the characteristics and influencing factors of liquid spurt caused by hydrodynamic ram [J]. Journal of National University of Defense Technology, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.
    [17] STRUTT J W. VI. On the capillary phenomena of jets [J]. Proceedings of the Royal Society of London, 1879, 29(196–199): 71–97. DOI: 10.1098/RSPL.1879.0015.
    [18] SALVADOR F J, SANTIAGO R, CRIALESI-ESPOSITO M, et al. Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation [J]. International Journal of Multiphase Flow, 2018, 102: 49–63. DOI: 10.1016/j.ijmultiphaseflow.2018.01.019.
    [19] XIE H Z, SONG L B, XIE Y Z, et al. An experimental study on the macroscopic spray characteristics of biodiesel and diesel in a constant volume chamber [J]. Energies, 2015, 8(6): 5952–5972. DOI: 10.3390/en8065952.
    [20] FRANC J P. The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation [M]//D’AGOSTINO L, SALVETTI M V. Fluid Dynamics of Cavitation and Cavitating Turbopumps. Vienna: Springer, 2007: 1–41. DOI: 10.1007/978-3-211-76669-9_1.
    [21] SALVADOR F J, SANTIAGO R, CRIALESI-ESPOSITO M, et al. Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation [J]. International Journal of Multiphase Flow, 2018, 102: 49–63. DOI: 10.1016/j.ijmultiphaseflow.2018.01.019.
    [22] 刘延俊. 液压与气压传动[M]. 机械工业出版社, 2007: 21–31.
    [23] CROWE C T, SCHWARZKOPF J D, SOMMERFELD M, et al. Multiphase flows with droplets and particles [M]. Boca Raton: CRC Press, 2011: 57–103.
    [24] BRIFFA F E J, DOMBROWSKI N. Entrainment of air into a liquid spray [J]. AIChE Journal, 1966, 12(4): 708–717. DOI: 10.1002/aic.690120416.
    [25] LEE S Y, TANKIN R S. Study of liquid spray (water) in a condensable environment (steam) [J]. International Journal of Heat and Mass Transfer, 1984, 27(3): 363–374. DOI: 10.1016/0017-9310(84)90283-7.
    [26] MUGELE R A, EVANS H D. Droplet size distribution in sprays [J]. Industrial & Engineering Chemistry, 1951, 43(6): 1317–1324. DOI: 10.1021/ie50498a023.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  33
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 修回日期:  2025-10-19
  • 网络出版日期:  2025-10-21

目录

    /

    返回文章
    返回