• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高温与冲击耦合作用下超高性能混凝土的动态力学特性与本构方程

张臣 高飞 何睿 王振 张国凯

张臣, 高飞, 何睿, 王振, 张国凯. 高温与冲击耦合作用下超高性能混凝土的动态力学特性与本构方程[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0171
引用本文: 张臣, 高飞, 何睿, 王振, 张国凯. 高温与冲击耦合作用下超高性能混凝土的动态力学特性与本构方程[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0171
ZHANG Chen, GAO Fei, HE Rui, WANG Zhen, ZHANG Guokai. Dynamic mechanical properties and constitutive model of ultra-high performance concrete subjected to coupled high-temperature and impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0171
Citation: ZHANG Chen, GAO Fei, HE Rui, WANG Zhen, ZHANG Guokai. Dynamic mechanical properties and constitutive model of ultra-high performance concrete subjected to coupled high-temperature and impact loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0171

高温与冲击耦合作用下超高性能混凝土的动态力学特性与本构方程

doi: 10.11883/bzycj-2025-0171
基金项目: 国家自然科学基金(12002171);中央高校基本科研业务费专项资金资助(30925010503)
详细信息
    作者简介:

    张 臣(1998- ),男,硕士研究生,zxc199_567@163.com

    通讯作者:

    高 飞(1990- ),男,博士,副教授,gaofei5257@njust.edu.cn

  • 中图分类号: O347.3

Dynamic mechanical properties and constitutive model of ultra-high performance concrete subjected to coupled high-temperature and impact loading

  • 摘要: 为研究超高性能混凝土(ultra-high performance concrete, UHPC)在高温-爆炸冲击耦合作用下的动态力学特性,采用高温分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验系统,开展了25~600 ℃温度及90~200 s−1应变率范围内C140 UHPC单轴压缩实验,系统分析了高温与冲击耦合作用下材料的强度、应变、韧性、应力-应变关系及破坏形态,揭示了温度与应变率效应对其动态力学性能的影响规律,并基于温度效应修正了Holmquist-Johnson-Cook(HJC)本构模型屈服面。结果表明:UHPC在高温动态压缩下表现出显著的应变率强化效应,但高温同时劣化其力学性能;材料应变能力与韧性演化规律源于温度效应与应变率效应的协同作用;在相同温度下,提高应变率可加剧UHPC的破坏程度。当温度超过400 ℃时,UHPC基体劣化及钢纤维氧化致使材料整体呈现脆性破坏特征,然而其局部芯部仍保持完整并具有显著残余承载能力;修正后的HJC屈服面适用于该类材料在高温与冲击耦合作用下的动态力学性能研究。
  • 图  1  UHPC的主要成分

    Figure  1.  The primary constituents of UHPC

    图  2  抗冲击试样的制备

    Figure  2.  Fabrication of impact-resistant specimens

    图  3  SHPB装置示意图

    Figure  3.  SHPB apparatus schematic diagram

    图  4  橡胶整形器修整入射波高频振荡部分

    Figure  4.  high-frequency oscillations of the incident wave shaped by using a pulse shaper

    图  5  25~600 ℃下0.30~0.40 MPa气压冲击试样的应力平衡图

    Figure  5.  Digrams of stress equilibrium in the specimens tested by a gun with 0.30–0.40 MPa gas pressure at 25–600 ℃

    图  6  程序控温箱升温曲线

    Figure  6.  The heating curves for the program-controlled temperature chamber

    图  7  UHPC试样在不同温度下的宏观形貌

    Figure  7.  Macroscopic morphology of UHPC specimens under different temperatures

    图  8  不同温度下SHPB冲击UHPC后的试样形貌

    Figure  8.  Specimen morphology of UHPC after SHPB impact under different temperatures

    图  9  不同温度下UHPC的动态应力-应变曲线

    Figure  9.  Dynamic stress-strain curves of UHPC at different temperatures

    图  10  UHPC的动态抗压强度和峰值应变与应变率的关系

    Figure  10.  Dynamic compressive strength and peak strain of UHPC against strain rate

    图  11  不同温度、相同应变率下超高性能混凝土动态抗压强度损失率

    Figure  11.  UHPC dynamic compressive strength loss ratios at different temperatures and constant strain rates

    图  12  UHPC韧性与应变率的关系曲线

    Figure  12.  Relationship between UHPC toughness and strain rate

    图  13  UHPC韧性与温度的关系

    Figure  13.  Relationship between UHPC toughness and temperature

    图  14  应变率系数的确定

    Figure  14.  Determination of strain rate coefficient

    图  15  UHPC三轴围压实验确定HJC屈服面参数$ A $

    Figure  15.  Determination of HJC yield surface parameter A by UHPC triaxial confining pressure experiment

    图  16  屈服面参数拟合

    Figure  16.  Fitting of yield surface parameters

    图  17  动态弹性模量与温度的关系

    Figure  17.  Relationship between dynamic elastic modulus and temperature

    图  18  温度软化因子与温度的关系

    Figure  18.  Relationship between temperature softening factor and temperature

    图  19  SHPB三维有限元模型

    Figure  19.  3D Finite Element Model for SHPB test

    图  20  不同温度下UHPC的动态应力-应变曲线数值模拟结果与实验结果的对比

    Figure  20.  Comparison between numerical simulated and experimental results for dynamic stress-strain curves of UHPC at different temperatures

    表  1  静、动态实验数据

    Table  1.   Static and dynamic experimental data

    应变率/s−1 抗压强度/MPa $ \overline{\sigma } $ $ \overline{p} $
    10−4 147.10 1.00 0.33
    10−2 148.20 1.05 0.35
    85.38 153.10 1.34 0.45
    95.52 153.90 1.37 0.46
    下载: 导出CSV

    表  2  不同温度下HJC屈服面参数

    Table  2.   HJC yield surface parameters under different temperatures

    温度/℃ A B N κ C
    25 0.243 1.5 0.5 1 0.0033
    200 0.17 1.05 0.5 0.7 0.0033
    400 0.09 0.56 0.5 0.375 0.0033
    600 0.01 0.06 0.5 0.04 0.0033
    下载: 导出CSV

    表  3  损伤参数及UHPC基本物理参数[36]

    Table  3.   Damage parameters and basic physical parameters of UHPC[36]

    ρ/(g·cm−3) ft/MPa fc/MPa D1 D2
    2.46 10.00 147.10 0.5 1.00
    下载: 导出CSV

    表  4  状态方程参数[36]

    Table  4.   Equation of state parameters[36]

    pc/MPa K1/GPa K1/GPa K1/GPa
    49.00 8.50 17.10 20.80
    下载: 导出CSV
  • [1] 任亮, 何瑜, 王凯. 超高性能混凝土抗冲击性能研究进展 [J]. 硅酸盐通报, 2018, 37(1): 146–154,165. DOI: 10.16552/j.cnki.issn1001-1625.2018.01.023.

    REN L, HE Y, WANG K. Research progress on impact resistance of ultra high performance concrete [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 146–154,165. DOI: 10.16552/j.cnki.issn1001-1625.2018.01.023.
    [2] 张仲昊, 汪维, 张国凯, 等. 不同高温作用后混凝土劣化损伤性能 [J]. 兵工学报, 2023, 44(S1): 152–159. DOI: 10.12382/bgxb.2023.0731.

    ZHANG Z H, WANG W, ZHANG G K, et al. Study on deterioration and damage performance of concrete at different high temperatures [J]. Acta Armamentarii, 2023, 44(S1): 152–159. DOI: 10.12382/bgxb.2023.0731.
    [3] 杨婷, 杨烨凯, 刘中宪, 等. 高温后超高性能混凝土力学性能试验研究 [J]. 工程力学, 2025, 42(4): 97–109. DOI: 10.6052/j.issn.1000-4750.2022.12.1052.

    YANG T, YANG Y K, LIU Z X, et al. Investigation on mechanical properties of ultra-high performance concrete after high temperature [J]. Engineering Mechanics, 2025, 42(4): 97–109. DOI: 10.6052/j.issn.1000-4750.2022.12.1052.
    [4] XIONG M X, LIEW J Y R. Spalling behavior and residual resistance of fibre reinforced ultra-high performance concrete after exposure to high temperatures [J]. Materiales de Construcción, 2015, 65(320): e071. DOI: 10.3989/mc.2015.00715.
    [5] 毛振豪, 马乾坤, 张继承, 等. 活性粉末混凝土高温后强度退化规律试验研究 [J]. 硅酸盐通报, 2022, 41(12): 4245–4253. DOI: 10.16552/j.cnki.issn1001-1625.20221017.002.

    MAO Z H, MA Q K, ZHANG J C, et al. Experimental research on strength degradation law of reactive powder concrete after elevated temperatures [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4245–4253. DOI: 10.16552/j.cnki.issn1001-1625.20221017.002.
    [6] YANG H, ZHAO H, LIU F Q. Residual cube strength of coarse RCA concrete after exposure to elevated temperatures [J]. Fire and Materials, 2018, 42(4): 424–435. DOI: 10.1002/fam.2508.
    [7] KRISHNA D A, PRIYADARSINI R S, NARAYANAN S. High temperature effects on different grades of concrete [J]. Sādhanā, 2021, 46(1): 31. DOI: 10.1007/s12046-020-01536-6.
    [8] ZHANG H, ZHANG W H, CHEN Y, et al. Study on the dynamic impact mechanical properties of high-temperature resistant ultra-high performance concrete (HTRUHPC) after high temperatures [J]. Journal of Building Engineering, 2024, 91: 109752. DOI: 10.1016/j.jobe.2024.109752.
    [9] 王立闻, 庞宝君, 杨震琦, 等. 钢纤维活性粉末混凝土高温后动力学特性研究 [J]. 建筑材料学报, 2010, 13(5): 620–625. DOI: 10.3969/j.issn.1007-9629.2010.05.011.

    WANG L W, PANG B J, YANG Z Q, et al. Dynamic behavior for steel-fiber reinforced reactive powder concrete after exposure in high temperature [J]. Journal of Building Materials, 2010, 13(5): 620–625. DOI: 10.3969/j.issn.1007-9629.2010.05.011.
    [10] GAO D Y, ZHANG W, TANG J Y, et al. Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures [J]. Construction and Building Materials, 2024, 435: 136830. DOI: 10.1016/j.conbuildmat.2024.136830.
    [11] SU H Y, XU J Y, REN W B. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature [J]. Materials & Design (1980-2015), 2014, 56: 579-588. DOI: 10.1016/j.matdes.2013.11.024.
    [12] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [13] YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009.
    [14] KOU X Y, LI L, DU X L, et al. Elastoplastic dynamic constitutive model of concrete with combined effects of temperature and strain rate [J]. Case Studies in Construction Materials, 2023, 18: e01905. DOI: 10.1016/j.cscm.2023.e01905.
    [15] 王景海, 陈万祥, 邹慧辉, 等. 高温后钢管RPC动态本构模型及SHPB试验验证 [J]. 解放军理工大学学报(自然科学版), 2016, 17(6): 539–545. DOI: 10.12018/j.issn.1009-3443.20160304002.

    WANG J H, CHEN W X, ZOU H H, et al. Dynamic constitutive model and SHPB tests for RPC-filled steel tube after exposure to high temperature [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2016, 17(6): 539–545. DOI: 10.12018/j.issn.1009-3443.20160304002.
    [16] LIANG W B, ZHAO J H, LI Y, et al. Research on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete after exposure to elevated temperatures under impact loading [J]. Applied Sciences, 2020, 10(21): 7684. DOI: 10.3390/app10217684.
    [17] SHEMIRANI A B, NAGHDABADI R, ASHRAFI M J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus [J]. Construction and Building Materials, 2016, 125: 326–336. DOI: 10.1016/j.conbuildmat.2016.08.045.
    [18] 宋博, 姜锡权, 陈为农. 霍普金森压杆实验中的脉冲整形技术 [C]//第三届全国爆炸力学实验技术交流会论文集. 合肥: 中国科学技术大学冲击动力学实验室, 2004: 77–146.

    SONG B, JIANG X Q, CHEN W N. Pulse shaping technique in split Hopkinson pressure bar (SHPB) experiments [C]//Proceedings of the Third National Symposium on Experimental Technology of Explosive Mechanics. Hefei: Laboratory of Shock Dynamics, University of Science and Technology of China, 2004: 77–146.
    [19] 高光发. 固体中的应力波导论 [M]. 北京: 科学出版社, 2022: 245–249.

    GAO G F. Introduction to stress waves in solid [M]. Beijing: Science Press, 2022: 245–249.
    [20] 高光发, 郭扬波. 高强混凝土动态压缩试验分析 [J]. 爆炸与冲击, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2017-0405.

    GAO G F, GUO Y B. Analysis of the dynamic compressive test of high strength concrete [J]. Explosion and Shock Waves, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2017-0405.
    [21] 罗百福. 高温下活性粉末混凝土爆裂规律及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 44–50.

    LUO B F. Study on explosive spalling rules and mechanical properties of reactive powder concrete at elevated temperatures [D]. Harbin: Harbin Institute of Technology, 2014: 44–50.
    [22] 康亚明, 贾延, 罗玉财, 等. 莫尔-库仑准则下高强度混凝土的临界爆裂蒸汽压力 [J]. 爆炸与冲击, 2018, 38(1): 224–232. DOI: 10.11883/bzycj-2016-0305.

    KANG Y M, JIA Y, LUO Y C, et al. Critical vapour pressure for explosive spalling of high-strength concrete based on Mohr-Coulomb criterion [J]. Explosion and Shock Waves, 2018, 38(1): 224–232. DOI: 10.11883/bzycj-2016-0305.
    [23] PR K R, MATHANGI D P, C S, et al. Experimental investigation of reactive powder concrete exposed to elevated temperatures [J]. Construction and Building Materials, 2020, 261: 119593. DOI: 10.1016/j.conbuildmat.2020.119593.
    [24] ZHAO J, ZHENG J J, PENG G F, et al. A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure [J]. Cement and Concrete Research, 2014, 65: 64–75. DOI: 10.1016/j.cemconres.2014.07.010.
    [25] 姜猛, 郭志昆, 陈万祥, 等. 高温后钢管活性粉末混凝土的动态力学性能 [J]. 爆炸与冲击, 2017, 37(3): 405–414. DOI: 10.11883/1001-1455(2017)03-0405-10.

    JIANG M, GUO Z K, CHEN W X, et al. Mechanical properties of reactive powder concrete-filled steel tube after exposure to high temperature under impact loading [J]. Explosion and Shock Waves, 2017, 37(3): 405–414. DOI: 10.11883/1001-1455(2017)03-0405-10.
    [26] 吴平, 周飞, 李庆华, 等. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究 [J]. 爆炸与冲击, 2022, 42(3): 033301. DOI: 10.11883/bzycj-2021-0178.

    WU P, ZHOU F, LI Q H, et al. Experimental study on the resistance of the ultra high toughness cementitious composites material-fiber concrete composite targets subjected to twice projectiles impact [J]. Explosion And Shock Waves, 2022, 42(3): 033301. DOI: 10.11883/bzycj-2021-0178.
    [27] 徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究 [J]. 工程力学, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.

    XU S L, CHEN C, LI Q H, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites [J]. Engineering Mechanics, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.
    [28] 赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究 [D]. 杭州: 浙江大学, 2018: 55–56. DOI: 10.27461/d.cnki.gzjdx.2018.000077.

    ZHAO X. Experimental and theoretical study on the dynamic properties of ultra high toughness cementitious composites [D]. Hangzhou: Zhejiang University, 2018: 55–56. DOI: 10.27461/d.cnki.gzjdx.2018.000077.
    [29] 吴栩霆, 王振, 周航, 等. 不同冷却方式下高温混凝土的动态力学特性 [J]. 爆炸与冲击, 2025, 45(1): 011001. DOI: 10.11883/bzycj-2024-0097.

    WU X T, WANG Z, ZHOU H, et al. Study on dynamic mechanical properties of high-temperature concrete with different cooling methods [J]. Explosion and Shock Waves, 2025, 45(1): 011001. DOI: 10.11883/bzycj-2024-0097.
    [30] DU Y X, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386.
    [31] 宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用 [J]. 爆炸与冲击, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.

    SONG S, DU C, LI Y Y. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete [J]. Explosion and Shock Waves, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.
    [32] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究 [J]. 土木工程学报, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.

    GUO Z H, WANG C Z. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.
    [33] 仵鹏涛. 三向应力状态下超高性能混凝土材料静态力学性能研究 [D]. 天津: 天津大学, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.

    WU P T. Study of static mechanical properties of ultra-high performance concrete under triaxial stress states [D]. Tianjin: Tianjin University, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.
    [34] TIAN X C, TAO T J, LOU Q X, et al. Modification and application of limestone HJC constitutive model under the impact load [J]. Lithosphere, 2021, 2021(S7): 6443087. DOI: 10.2113/2022/6443087.
    [35] 王晓飞, 周海龙, 王海龙. 超高性能混凝土的抗剪强度 [J]. 硅酸盐学报, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.

    WANG X F, ZHOU H L, WANG H L. Shear strength of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.
    [36] YU R, SPIESZ P, BROUWERS H J H. Numerical simulation of ultra-high performance fibre reinforced concrete (UHPFRC) under high velocity impact of deformable projectile [C]//15th International Symposium on Interaction of the Effects of Munitions with Structure (ISIEMS2013). Potsdam: Defense Threat Reduction Agency, 2013: 1–10.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  52
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-10
  • 修回日期:  2025-09-15
  • 网络出版日期:  2025-11-04

目录

    /

    返回文章
    返回