Dynamic mechanical properties and constitutive model of ultra-high performance concrete subjected to coupled high-temperature and impact loading
-
摘要: 为研究超高性能混凝土(ultra-high performance concrete, UHPC)在高温-爆炸冲击耦合作用下的动态力学特性,采用高温分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验系统,开展了25~600 ℃温度及90~200 s−1应变率范围内C140 UHPC单轴压缩实验,系统分析了高温与冲击耦合作用下材料的强度、应变、韧性、应力-应变关系及破坏形态,揭示了温度与应变率效应对其动态力学性能的影响规律,并基于温度效应修正了Holmquist-Johnson-Cook(HJC)本构模型屈服面。结果表明:UHPC在高温动态压缩下表现出显著的应变率强化效应,但高温同时劣化其力学性能;材料应变能力与韧性演化规律源于温度效应与应变率效应的协同作用;在相同温度下,提高应变率可加剧UHPC的破坏程度。当温度超过400 ℃时,UHPC基体劣化及钢纤维氧化致使材料整体呈现脆性破坏特征,然而其局部芯部仍保持完整并具有显著残余承载能力;修正后的HJC屈服面适用于该类材料在高温与冲击耦合作用下的动态力学性能研究。Abstract: In order to investigate the dynamic mechanical properties of ultra-high performance concrete (UHPC) under coupled high-temperature and explosive impact effects, a 75 mm-diameter high-temperature split Hopkinson pressure bar (SHPB) apparatus was employed. Uniaxial compression tests were conducted on C140 UHPC specimens in the temperatures ranging from 25 ℃ to 600 ℃ and the strain rate ranging from 90 s−1 to 200 s−1. A systematic analysis was performed on the strength, strain, toughness, stress-strain relationship, and failure modes of the material under the combined condition of high temperature and impact loading. The influence of temperature and strain rate on the dynamic mechanical properties was revealed, and the yield surface of the Holmquist-Johnson-Cook (HJC) constitutive model was modified by incorporating thermal effects. The results indicate that UHPC exhibits a significant strain rate strengthening effect under high-temperature dynamic compression, while elevated temperatures simultaneously degrade its mechanical properties. The evolution of material strain capacity and toughness stems from the synergistic interaction between thermal and strain rate effects. At identical temperatures, increased strain rates exacerbate the damage of UHPC. When temperatures exceed 400 ℃, matrix degradation and steel fiber oxidation cause the material to exhibit overall brittle failure characteristics; however, its local core region remains integrity and retains notable residual load-bearing capacity. The modified HJC yield surface is suitable for describing the dynamic mechanical behavior of this material under coupled high-temperature and impact conditions. These findings provide theoretical foundations and data support for the safety design and evaluation of military and civil protective engineering.
-
表 1 静、动态实验数据
Table 1. Static and dynamic experimental data
应变率/s−1 抗压强度/MPa $ \overline{\sigma } $ $ \overline{p} $ 10−4 147.10 1.00 0.33 10−2 148.20 1.05 0.35 85.38 153.10 1.34 0.45 95.52 153.90 1.37 0.46 表 2 不同温度下HJC屈服面参数
Table 2. HJC yield surface parameters under different temperatures
温度/℃ A B N κ C 25 0.243 1.5 0.5 1 0.0033 200 0.17 1.05 0.5 0.7 0.0033 400 0.09 0.56 0.5 0.375 0.0033 600 0.01 0.06 0.5 0.04 0.0033 ρ/(g·cm−3) ft/MPa fc/MPa D1 D2 2.46 10.00 147.10 0.5 1.00 -
[1] 任亮, 何瑜, 王凯. 超高性能混凝土抗冲击性能研究进展 [J]. 硅酸盐通报, 2018, 37(1): 146–154,165. DOI: 10.16552/j.cnki.issn1001-1625.2018.01.023.REN L, HE Y, WANG K. Research progress on impact resistance of ultra high performance concrete [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 146–154,165. DOI: 10.16552/j.cnki.issn1001-1625.2018.01.023. [2] 张仲昊, 汪维, 张国凯, 等. 不同高温作用后混凝土劣化损伤性能 [J]. 兵工学报, 2023, 44(S1): 152–159. DOI: 10.12382/bgxb.2023.0731.ZHANG Z H, WANG W, ZHANG G K, et al. Study on deterioration and damage performance of concrete at different high temperatures [J]. Acta Armamentarii, 2023, 44(S1): 152–159. DOI: 10.12382/bgxb.2023.0731. [3] 杨婷, 杨烨凯, 刘中宪, 等. 高温后超高性能混凝土力学性能试验研究 [J]. 工程力学, 2025, 42(4): 97–109. DOI: 10.6052/j.issn.1000-4750.2022.12.1052.YANG T, YANG Y K, LIU Z X, et al. Investigation on mechanical properties of ultra-high performance concrete after high temperature [J]. Engineering Mechanics, 2025, 42(4): 97–109. DOI: 10.6052/j.issn.1000-4750.2022.12.1052. [4] XIONG M X, LIEW J Y R. Spalling behavior and residual resistance of fibre reinforced ultra-high performance concrete after exposure to high temperatures [J]. Materiales de Construcción, 2015, 65(320): e071. DOI: 10.3989/mc.2015.00715. [5] 毛振豪, 马乾坤, 张继承, 等. 活性粉末混凝土高温后强度退化规律试验研究 [J]. 硅酸盐通报, 2022, 41(12): 4245–4253. DOI: 10.16552/j.cnki.issn1001-1625.20221017.002.MAO Z H, MA Q K, ZHANG J C, et al. Experimental research on strength degradation law of reactive powder concrete after elevated temperatures [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4245–4253. DOI: 10.16552/j.cnki.issn1001-1625.20221017.002. [6] YANG H, ZHAO H, LIU F Q. Residual cube strength of coarse RCA concrete after exposure to elevated temperatures [J]. Fire and Materials, 2018, 42(4): 424–435. DOI: 10.1002/fam.2508. [7] KRISHNA D A, PRIYADARSINI R S, NARAYANAN S. High temperature effects on different grades of concrete [J]. Sādhanā, 2021, 46(1): 31. DOI: 10.1007/s12046-020-01536-6. [8] ZHANG H, ZHANG W H, CHEN Y, et al. Study on the dynamic impact mechanical properties of high-temperature resistant ultra-high performance concrete (HTRUHPC) after high temperatures [J]. Journal of Building Engineering, 2024, 91: 109752. DOI: 10.1016/j.jobe.2024.109752. [9] 王立闻, 庞宝君, 杨震琦, 等. 钢纤维活性粉末混凝土高温后动力学特性研究 [J]. 建筑材料学报, 2010, 13(5): 620–625. DOI: 10.3969/j.issn.1007-9629.2010.05.011.WANG L W, PANG B J, YANG Z Q, et al. Dynamic behavior for steel-fiber reinforced reactive powder concrete after exposure in high temperature [J]. Journal of Building Materials, 2010, 13(5): 620–625. DOI: 10.3969/j.issn.1007-9629.2010.05.011. [10] GAO D Y, ZHANG W, TANG J Y, et al. Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures [J]. Construction and Building Materials, 2024, 435: 136830. DOI: 10.1016/j.conbuildmat.2024.136830. [11] SU H Y, XU J Y, REN W B. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature [J]. Materials & Design (1980-2015), 2014, 56: 579-588. DOI: 10.1016/j.matdes.2013.11.024. [12] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002. [13] YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009. [14] KOU X Y, LI L, DU X L, et al. Elastoplastic dynamic constitutive model of concrete with combined effects of temperature and strain rate [J]. Case Studies in Construction Materials, 2023, 18: e01905. DOI: 10.1016/j.cscm.2023.e01905. [15] 王景海, 陈万祥, 邹慧辉, 等. 高温后钢管RPC动态本构模型及SHPB试验验证 [J]. 解放军理工大学学报(自然科学版), 2016, 17(6): 539–545. DOI: 10.12018/j.issn.1009-3443.20160304002.WANG J H, CHEN W X, ZOU H H, et al. Dynamic constitutive model and SHPB tests for RPC-filled steel tube after exposure to high temperature [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2016, 17(6): 539–545. DOI: 10.12018/j.issn.1009-3443.20160304002. [16] LIANG W B, ZHAO J H, LI Y, et al. Research on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete after exposure to elevated temperatures under impact loading [J]. Applied Sciences, 2020, 10(21): 7684. DOI: 10.3390/app10217684. [17] SHEMIRANI A B, NAGHDABADI R, ASHRAFI M J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus [J]. Construction and Building Materials, 2016, 125: 326–336. DOI: 10.1016/j.conbuildmat.2016.08.045. [18] 宋博, 姜锡权, 陈为农. 霍普金森压杆实验中的脉冲整形技术 [C]//第三届全国爆炸力学实验技术交流会论文集. 合肥: 中国科学技术大学冲击动力学实验室, 2004: 77–146.SONG B, JIANG X Q, CHEN W N. Pulse shaping technique in split Hopkinson pressure bar (SHPB) experiments [C]//Proceedings of the Third National Symposium on Experimental Technology of Explosive Mechanics. Hefei: Laboratory of Shock Dynamics, University of Science and Technology of China, 2004: 77–146. [19] 高光发. 固体中的应力波导论 [M]. 北京: 科学出版社, 2022: 245–249.GAO G F. Introduction to stress waves in solid [M]. Beijing: Science Press, 2022: 245–249. [20] 高光发, 郭扬波. 高强混凝土动态压缩试验分析 [J]. 爆炸与冲击, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2017-0405.GAO G F, GUO Y B. Analysis of the dynamic compressive test of high strength concrete [J]. Explosion and Shock Waves, 2019, 39(3): 033103. DOI: 10.11883/bzycj-2017-0405. [21] 罗百福. 高温下活性粉末混凝土爆裂规律及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 44–50.LUO B F. Study on explosive spalling rules and mechanical properties of reactive powder concrete at elevated temperatures [D]. Harbin: Harbin Institute of Technology, 2014: 44–50. [22] 康亚明, 贾延, 罗玉财, 等. 莫尔-库仑准则下高强度混凝土的临界爆裂蒸汽压力 [J]. 爆炸与冲击, 2018, 38(1): 224–232. DOI: 10.11883/bzycj-2016-0305.KANG Y M, JIA Y, LUO Y C, et al. Critical vapour pressure for explosive spalling of high-strength concrete based on Mohr-Coulomb criterion [J]. Explosion and Shock Waves, 2018, 38(1): 224–232. DOI: 10.11883/bzycj-2016-0305. [23] PR K R, MATHANGI D P, C S, et al. Experimental investigation of reactive powder concrete exposed to elevated temperatures [J]. Construction and Building Materials, 2020, 261: 119593. DOI: 10.1016/j.conbuildmat.2020.119593. [24] ZHAO J, ZHENG J J, PENG G F, et al. A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure [J]. Cement and Concrete Research, 2014, 65: 64–75. DOI: 10.1016/j.cemconres.2014.07.010. [25] 姜猛, 郭志昆, 陈万祥, 等. 高温后钢管活性粉末混凝土的动态力学性能 [J]. 爆炸与冲击, 2017, 37(3): 405–414. DOI: 10.11883/1001-1455(2017)03-0405-10.JIANG M, GUO Z K, CHEN W X, et al. Mechanical properties of reactive powder concrete-filled steel tube after exposure to high temperature under impact loading [J]. Explosion and Shock Waves, 2017, 37(3): 405–414. DOI: 10.11883/1001-1455(2017)03-0405-10. [26] 吴平, 周飞, 李庆华, 等. 超高韧性水泥基复合材料—纤维混凝土组合靶体抗两次打击试验研究 [J]. 爆炸与冲击, 2022, 42(3): 033301. DOI: 10.11883/bzycj-2021-0178.WU P, ZHOU F, LI Q H, et al. Experimental study on the resistance of the ultra high toughness cementitious composites material-fiber concrete composite targets subjected to twice projectiles impact [J]. Explosion And Shock Waves, 2022, 42(3): 033301. DOI: 10.11883/bzycj-2021-0178. [27] 徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究 [J]. 工程力学, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.XU S L, CHEN C, LI Q H, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites [J]. Engineering Mechanics, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147. [28] 赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究 [D]. 杭州: 浙江大学, 2018: 55–56. DOI: 10.27461/d.cnki.gzjdx.2018.000077.ZHAO X. Experimental and theoretical study on the dynamic properties of ultra high toughness cementitious composites [D]. Hangzhou: Zhejiang University, 2018: 55–56. DOI: 10.27461/d.cnki.gzjdx.2018.000077. [29] 吴栩霆, 王振, 周航, 等. 不同冷却方式下高温混凝土的动态力学特性 [J]. 爆炸与冲击, 2025, 45(1): 011001. DOI: 10.11883/bzycj-2024-0097.WU X T, WANG Z, ZHOU H, et al. Study on dynamic mechanical properties of high-temperature concrete with different cooling methods [J]. Explosion and Shock Waves, 2025, 45(1): 011001. DOI: 10.11883/bzycj-2024-0097. [30] DU Y X, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386. [31] 宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用 [J]. 爆炸与冲击, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.SONG S, DU C, LI Y Y. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete [J]. Explosion and Shock Waves, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343. [32] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究 [J]. 土木工程学报, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001.GUO Z H, WANG C Z. Investigation of strength and failure criterion of concrete under multi-axial stresses [J]. China Civil Engineering Journal, 1991, 24(3): 1–14. DOI: 10.15951/j.tmgcxb.1991.03.001. [33] 仵鹏涛. 三向应力状态下超高性能混凝土材料静态力学性能研究 [D]. 天津: 天津大学, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796.WU P T. Study of static mechanical properties of ultra-high performance concrete under triaxial stress states [D]. Tianjin: Tianjin University, 2019: 40–44. DOI: 10.27356/d.cnki.gtjdu.2019.004796. [34] TIAN X C, TAO T J, LOU Q X, et al. Modification and application of limestone HJC constitutive model under the impact load [J]. Lithosphere, 2021, 2021(S7): 6443087. DOI: 10.2113/2022/6443087. [35] 王晓飞, 周海龙, 王海龙. 超高性能混凝土的抗剪强度 [J]. 硅酸盐学报, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.WANG X F, ZHOU H L, WANG H L. Shear strength of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127. [36] YU R, SPIESZ P, BROUWERS H J H. Numerical simulation of ultra-high performance fibre reinforced concrete (UHPFRC) under high velocity impact of deformable projectile [C]//15th International Symposium on Interaction of the Effects of Munitions with Structure (ISIEMS2013). Potsdam: Defense Threat Reduction Agency, 2013: 1–10. -


下载: