• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

剪切增强和应变率效应对混凝土类材料状态方程的影响

高矗 孔祥振 贾永胜 王子豪

高矗, 孔祥振, 贾永胜, 王子豪. 剪切增强和应变率效应对混凝土类材料状态方程的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0175
引用本文: 高矗, 孔祥振, 贾永胜, 王子豪. 剪切增强和应变率效应对混凝土类材料状态方程的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0175
GAO Chu, KONG Xiangzhen, JIA Yongsheng, WANG Zihao. Influence of shear-enhanced compaction and strain-rate effects on the equation of state for concrete-like materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0175
Citation: GAO Chu, KONG Xiangzhen, JIA Yongsheng, WANG Zihao. Influence of shear-enhanced compaction and strain-rate effects on the equation of state for concrete-like materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0175

剪切增强和应变率效应对混凝土类材料状态方程的影响

doi: 10.11883/bzycj-2025-0175
基金项目: 国家自然科学基金(52478524,52522814,U25A20355);湖北省自然科学基金(2025AFB632)
详细信息
    作者简介:

    高 矗(1988- ),男,工学博士,副教授,gaochu0617@163.com

    通讯作者:

    孔祥振(1988- ),男,工学博士,教授,ouckxz@163.com

  • 中图分类号: O382

Influence of shear-enhanced compaction and strain-rate effects on the equation of state for concrete-like materials

  • 摘要: 为研究爆炸冲击荷载作用下剪切增强效应和应变率效应对混凝土类材料状态方程的影响,基于水泥砂浆静水压缩和平板撞击两类状态方程行为实验,利用Kong-Fang混凝土类材料流体弹塑性模型和LS-DYNA中光滑粒子伽辽金(smoothed particle Galerkin, SPG)算法,建立能科学表征混凝土类材料包括剪切增强效应和应变率效应在内的复杂动态力学行为的高精度数值模型。在此基础上,定量分析剪切增强效应和应变率效应对混凝土类材料状态方程行为的影响,并指出剔除平板撞击实验中剪切增强和应变率耦合效应所面临的困难。结果表明:利用Kong-Fang模型和SPG算法可精确模拟混凝土类材料包括剪切增强效应和应变率效应在内的复杂动态力学行为;为实现爆炸冲击荷载作用下混凝土类材料在高-中-低压下动态力学行为的精细化模拟,要依据可靠的状态方程行为实验数据建立混凝土类材料宽广压力范围状态方程;在利用平板撞击实验数据标定状态方程参数时,须剔除剪切增强和应变率耦合效应的影响;建立混凝土类材料宽广压力范围状态方程存在悖论,利用数值迭代策略可能是解决困难的有效手段。研究结论可为后续利用数值迭代策略剔除剪切增强效应和应变率效应对混凝土类材料状态方程的影响,并进一步建立爆炸冲击荷载作用下混凝土类材料高精度宽广压力范围状态方程提供依据。
  • 图  1  混凝土类材料状态方程示意图[18]

    Figure  1.  Typical equation of state for concrete-like materials[18]

    图  2  水泥砂浆HC实验加载/卸载曲线

    Figure  2.  Loading-unloading curves from HC experiment for cement mortar

    图  3  撞击速度为288 m/s的对称FPI实验粒子速度时程曲线与数值计算预测结果的对比

    Figure  3.  Comparison of particle velocity-time histories recorded in symmetric FPI experiment at an impact velocity of 288 m/s with ones predicted by numerical computation

    图  4  撞击速度为475 m/s的正向FPI实验粒子速度时程曲线与数值计算预测结果的对比

    Figure  4.  Comparison of particle velocity-time histories recorded in normal FPI Experiment at an impact velocity of 475 m/s with ones predicted by numerical computation

    图  5  FPI实验[2]水泥砂浆靶体纵波波速与粒子速度关系

    Figure  5.  Relationship between longitudinal wave velocity and particle velocity of cement mortar target for FPI experiment[2]

    图  6  FPI实验[2]获得的水泥砂浆轴向应力-体积应变关系

    Figure  6.  Relationship between axial stress and volumetric strain of cement mortar determined by FPI experiment[2]

    图  7  HC实验[30]获得的水泥砂浆静水压力和FPI实验[2]获得的水泥砂浆轴向应力与体积应变关系的对比

    Figure  7.  Comparison between hydrostatic pressure-volumetric strain curve obtained in HC experiment[30] and axial stress-volumetric strain curve obtained in FPI experiment[2] for cement mortar

    图  8  根据三轴压缩实验数据标定的水泥砂浆强度面参数

    Figure  8.  Failure surface parameters for cement mortar calibrated by triaxial compression experimental data

    图  9  根据HC实验数据标定EoS参数(EoS-HC)

    Figure  9.  Calibrated EoS parameters based on HC data (EoS-HC)

    图  10  水泥砂浆状态方程行为实验数值模拟几何模型及边界条件

    Figure  10.  Geometry and boundary conditions of numerical models for EoS behavior tests of cement mortar

    图  11  水泥砂浆状态方程行为实验数值模型网格敏感性分析

    Figure  11.  Mesh-size sensitivity of numerical models for EoS behavior experiments of cement mortar

    图  12  HC实验数值模拟结果与相应实验结果的对比

    Figure  12.  Comparison of numerical predictions for the HC experiment with the corresponding experimental data

    图  13  不同速度下FPI实验数值模拟预测的σx-μ关系与实验结果的对比

    Figure  13.  Comparison of the σx-μ relation between the FPI experiment data and numerical predictions at different impact velocities

    图  14  数值模拟预测的撞击速度为288 m/s的对称FPI实验水泥砂浆靶体压力时程曲线

    Figure  14.  Numerically predicted pressure-time histories in cement mortar target for symmetric FPI experiment at an impact velocity of 288 m/s

    图  15  数值模拟预测的撞击速度为288 m/s的对称FPI实验水泥砂浆靶体损伤云图

    Figure  15.  Numerically predicted damage in cement mortar target for symmetric FPI experiment at a velocity of 288 m/s

    图  16  根据FPI实验数据标定EoS参数(EoS-FPI)

    Figure  16.  Calibrated EoS parameters based on FPI test data (EoS-FPI)

    图  17  基于EoS-FPI的水泥砂浆2类状态方程行为实验数值模拟与实测结果对比

    Figure  17.  Comparison of experimental data with numerical predictions using EoS-FPI

    图  18  基于2种EoS参数进行数值模拟得到的HC和FPI实验预测结果的对比

    Figure  18.  Comparison of numerical predictions based on two sets of EoS parameters

    图  19  剪切增强效应和应变率效应的对比

    Figure  19.  Comparison between shear-enhanced compaction effect and strain-rate effect

    表  1  水泥砂浆配合比和力学性能参数

    Table  1.   Mix ratios and mechanical property parameters of cement mortar

    实验类别 水灰质量之比 配合比/(kg·m−3) 密度/(kg·m−3) 泊松比 抗压强度/MPa 来源
    水泥
    HC实验 0.5 336.4 672.8 1183.5 2194 0.20 44.8 文献[30]
    FPI实验 0.5 276.6 553.2 1438.2 2268 0.19 42.7 文献[2,31]
    下载: 导出CSV

    表  2  不同撞击速度下水泥砂浆FPI实验结果[2]

    Table  2.   FPI experimental data for cement mortar at different impact velocities[2]

    对称FPI实验 正向FPI实验
    撞击速度/(m·s−1) 粒子速度/(m·s−1) 纵波波速/(m·s−1) 撞击速度/(m·s−1) 粒子速度/(m·s−1) 纵波波速/(m·s−1)
    45 22.5 3055 314 274.9 2041
    61 31.5 2160 475 411.7 2370
    82 41.0 1996 601 508.4 2827
    100 50.0 2140 777 656.9 2908
    114 57.0 1613 957 787.8 3546
    146 73.0 1336 1560 1230.8 4635
    170 85.0 1282 1970 1526.1 5373
    212 106.0 1330
    214 107.0 1242
    288 144.0 1454
    下载: 导出CSV

    表  3  水泥砂浆Kong-Fang模型的状态方程参数

    Table  3.   Equation-of-state parameters of the Kong-Fang model for cement mortar

    项目 μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10
    EoS-HC 0 0.0038 0.0221 0.0448 0.0656 0.0875 0.1119 0.1314 0.1538 0.1788
    EoS-FPI 0 0.0052 0.0201 0.0512 0.0856 0.1312 0.1701 0.2014 0.2437 0.2817
    项目 p1/GPa p2/GPa p3/GPa p4/GPa p5/GPa p6/GPa p7/GPa p8/GPa p9/GPa p10/GPa
    EoS-HC 0 0.0148 0.0793 0.1440 0.2037 0.2728 0.3663 0.4533 0.5718 0.7271
    EoS-FPI 0 0.1662 0.3276 0.4521 0.5863 0.9061 1.3952 1.9939 3.3863 5.5687
    下载: 导出CSV
  • [1] 刘锋, 李庆明. 混凝土类材料动态压缩强度在多维应力状态下的应变率效应 [J]. 爆炸与冲击, 2022, 42(9): 091408. DOI: 10.11883/bzycj-2022-0037.

    LIU F, LI Q M. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state [J]. Explosion and Shock Waves, 2022, 42(9): 091408. DOI: 10.11883/bzycj-2022-0037.
    [2] WANG Z H, WEN H M, LI X H, et al. On the equation of state for concrete-like materials [J]. Journal of Building Engineering, 2022, 61: 105262. DOI: 10.1016/j.jobe.2022.105262.
    [3] LARSON D B, ANDERSON G D. Plane shock wave studies of porous geologic media [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4592–4600. DOI: 10.1029/JB084iB09p04592.
    [4] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [5] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [6] MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
    [7] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.

    GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
    [8] LIU X, KONG X Z, FANG Q, et al. Peridynamics modelling of projectile penetration into concrete targets [J]. International Journal of Impact Engineering, 2025, 195: 105110. DOI: 10.1016/j.ijimpeng.2024.105110.
    [9] 王礼立, 胡时胜. 应力波基础 [M]. 3版. 北京: 国防工业出版社, 2023: 213–230.

    WANG L L, HU S S. Foundation of stress waves [M]. 3rd ed. Beijing: National Defense Industry Press, 2023: 213–230.
    [10] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//14th International Symposium Ballistics. Québec City, Canada: American Defense Preparedness Association, 1993: 591–600.
    [11] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg, Germany: Akademie für Kommunikation und Information, 1999: 315–322.
    [12] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [13] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [14] CUI J, HAO H, SHI Y C, et al. Volumetric properties of concrete under true triaxial dynamic compressive loadings [J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019126. DOI: 10.1061/(ASCE)MT.1943-5533.0002776.
    [15] MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, Inc. , 1994: 98, 117–179. DOI: 10.1002/9780470172278.
    [16] 王海兵. 岩石本构模型及地下爆炸力学效应数值研究 [D]. 北京: 北京理工大学, 2018: 45–60. DOI: 10.26948/d.cnki.gbjlu.2018.000264.

    WANG H B. Study on rock constitutive model and mechanical effects numerical simulation of underground explosion [D]. Beijing: Beijing Institute of Technology, 2018: 45–60. DOI: 10.26948/d.cnki.gbjlu.2018.000264.
    [17] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [18] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. DOI: 10.1063/1.1658021.
    [19] STRALEY Ш H W. The physics of high pressure. P. W. Bridgman [J]. The Journal of Geology, 1933, 41(1): 106. DOI: 10.1086/624011.
    [20] NEEL C. Compaction and spall of UHPC concrete under shock conditions [J]. Journal of Dynamic Behavior of Materials, 2018, 4(4): 505–528. DOI: 10.1007/s40870-018-0173-3.
    [21] PIOTROWSKA E, FORQUIN P. Experimental investigation of the confined behavior of dry and wet high-strength concrete: quasi static versus dynamic loading [J]. Journal of Dynamic Behavior of Materials, 2015, 1(2): 191–200. DOI: 10.1007/s40870-015-0017-3.
    [22] LI M, CUI J, SHI Y C, et al. Experimental study on the size effect on the equation of state of concretes under shock loading [J]. Defence Technology, 2024, 33: 160–167. DOI: 10.1016/j.dt.2023.06.014.
    [23] Livermore Software Technology Corporation. LS-DYNA® keyword user’s manual volume I (LS-DYNA R11) [R]. Livermore: Livermore Software Technology Corporation (LSTC), 2018.
    [24] 孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024605. DOI: 10.1360/SSPMA-2019-0186.

    KONG X Z, FANG Q. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the Smooth Particle Hydrodynamics method [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(2): 024605. DOI: 10.1360/SSPMA-2019-0186.
    [25] WU C T, WU Y C, CRAWFORD J E, et al. Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method [J]. International Journal of Impact Engineering, 2017, 106: 1–17. DOI: 10.1016/j.ijimpeng.2017.03.005.
    [26] 方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅰ): 抗爆机制 [J]. 爆炸与冲击, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.

    FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism [J]. Explosion and Shock Waves, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
    [27] WANG L B, BAI Z, QIAN B W, et al. Research on the damage effects of buried explosions concerning the crater size and peak wave [J]. International Journal of Impact Engineering, 2025, 206: 105410. DOI: 10.1016/j.ijimpeng.2025.105410.
    [28] YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
    [29] YANG Y Z, KONG X Z, TANG J J, et al. Experimental and numerical investigation on projectile penetration resistance of prefabricated concrete targets [J]. International Journal of Impact Engineering, 2024, 193: 105053. DOI: 10.1016/j.ijimpeng.2024.105053.
    [30] YANKELEVSKY D Z, KARINSKI Y S, ZHUTOVSKY S, et al. High-pressure uniaxial confined compression tests of mortars [J]. Construction and Building Materials, 2018, 165: 523–532. DOI: 10.1016/j.conbuildmat.2018.01.057.
    [31] WANG Z H, WEN H M, ZHENG H, et al. Dynamic increase factors of concrete-like materials at very high strain rates [J]. Construction and Building Materials, 2022, 345: 128270. DOI: 10.1016/j.conbuildmat.2022.128270.
    [32] KOHEES M, SANJAYAN J, RAJEEV P. Stress-strain relationship of cement mortar under triaxial compression [J]. Construction and Building Materials, 2019, 220: 456–463. DOI: 10.1016/j.conbuildmat.2019.05.146.
    [33] FENG M Y, WANG Z, WU L C. Experimental study on high-strength concrete, ultrahigh-strength concrete and corresponding mortar under triaxial compression [J]. Arabian Journal for Science and Engineering, 2021, 46(11): 11179–11194. DOI: 10.1007/s13369-021-05663-y.
    [34] GEBBEKEN N, GREULICH S, PIETZSCH A. Equation of state data for concrete determined by full-scale experiments and flyer-plate-impact tests [C] // European Conference on Computational Mechanics. Cracow Poland, 2001.
    [35] RIEDEL W, WICKLEIN M, THOMA K. Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35(3): 155–171. DOI: 10.1016/j.ijimpeng.2007.02.001.
    [36] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.Ijimpeng.2013.04.005.
    [37] HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
    [38] YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [39] XU S L, WU P, LI Q H, et al. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive [J]. Cement and Concrete Composites, 2021, 119: 103989. DOI: 10.1016/j.cemconcomp.2021.103989.
    [40] YUAN P C, XU S C, LIU J, et al. Experimental and numerical study of blast resistance of geopolymer based high performance concrete sandwich walls incorporated with metallic tube core [J]. Engineering Structures, 2023, 278: 115505. DOI: 10.1016/j.engstruct.2022.115505.
    [41] ZHOU L, WEN H M. A new dynamic plasticity and failure model for metals [J]. Metals, 2019, 9(8): 905. DOI: 10.3390/met9080905.
    [42] LACINA D, NEEL C, DATTELBAUM D. Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges [J]. Journal of Applied Physics, 2018, 123(18): 185901. DOI: 10.1063/1.5023230.
    [43] TANG J J, KONG X Z, FANG Q, et al. An efficient three-dimensional damage-based nonlocal model for dynamic tensile failure in concrete [J]. International Journal of Impact Engineering, 2021, 156: 103965. DOI: 10.1016/j.ijimpeng.2021.103965.
    [44] KONG X Z, FANG Q, WU H, et al. A comparison of strain-rate enhancement approaches for concrete material subjected to high strain-rate [J]. International Journal of Protective Structures, 2017, 8(2): 155–176. DOI: 10.1177/2041419617698320.
    [45] KARINSKI Y S, ZHUTOVSKY S, FELDGUN V R, et al. An experimental study on the equation of state of cementitious materials using confined compression tests [J]. Key Engineering Materials, 2016, 711: 830–836. DOI: 10.4028/www.scientific.net/KEM.711.830.
    [46] MEYERS M A, MURR L E. Shock waves and high-strain-rate phenomena in metals: concepts and applications [M]. New York: Plenum Press, 1981: 417.
    [47] 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999: 222–227.
    [48] 张江跃, 谭华, 虞吉林. 双屈服法测定93W合金的屈服强度 [J]. 高压物理学报, 1997, 11(4): 254–259. DOI: 10.11858/gywlxb.1997.04.004.

    ZHANG J Y, TAN H, YU J L. Determination of the yield strength of 93W alloys by using AC techniques [J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 254–259. DOI: 10.11858/gywlxb.1997.04.004.
    [49] HAO H, HAO Y F, LI Z X. Numerical quantification of factors influencing high-speed impact tests of concrete material [M]//HAO H, LI Z X. Advances in Protective Structures Research. London: CRC Press, 2012: 97–130. DOI: 10.1201/b12768-5.
    [50] LIU F, LI Q M. Strain-rate effect of polymers and correction methodology in a SHPB test [J]. International Journal of Impact Engineering, 2022, 161: 104109. DOI: 10.1016/j.ijimpeng.2021.104109.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  25
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-12
  • 修回日期:  2025-11-07
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回