• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

非药式水下爆炸冲击波加载的PD-SPH建模与分析

陈丁 余泽洋 姚学昊 周章涛 王孟元 黄丹

陈丁, 余泽洋, 姚学昊, 周章涛, 王孟元, 黄丹. 非药式水下爆炸冲击波加载的PD-SPH建模与分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0180
引用本文: 陈丁, 余泽洋, 姚学昊, 周章涛, 王孟元, 黄丹. 非药式水下爆炸冲击波加载的PD-SPH建模与分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0180
CHEN Ding, YU Zeyang, YAO Xuehao, ZHOU Zhangtao, WANG Mengyuan, HUANG Dan. Modeling and analysis of non-explosive underwater shock loading using a PD-SPH coupling method[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0180
Citation: CHEN Ding, YU Zeyang, YAO Xuehao, ZHOU Zhangtao, WANG Mengyuan, HUANG Dan. Modeling and analysis of non-explosive underwater shock loading using a PD-SPH coupling method[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0180

非药式水下爆炸冲击波加载的PD-SPH建模与分析

doi: 10.11883/bzycj-2025-0180
基金项目: 国家自然科学基金(12302257,12072104);船舶结构安全全国重点实验室开放基金(Naklas2024KF006-K)
详细信息
    作者简介:

    陈 丁(1992- ),男,博士,副研究员,dingchen@fzu.edu.cn

  • 中图分类号: O383

Modeling and analysis of non-explosive underwater shock loading using a PD-SPH coupling method

  • 摘要: 鉴于舰艇抗爆炸冲击性能评估面临强非线性流固耦合、结构大变形及损伤破坏演化等关键力学问题挑战,通过耦合近场动力学(peridynamics, PD)和光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)的各自优势,构建适用于水下爆炸冲击模拟的高效PD-SPH数值模型。采用SPH模拟水下冲击波传播及其流固耦合效应,通过PD方法精确表征固体结构从弹性变形至渐进损伤破坏的全过程力学行为,建立非药式水下爆炸冲击波加载装置的PD-SPH数值模型。针对大规模粒子计算效率瓶颈,开发基于区域分解与数据通信机制的多GPU (graphics processing unit)并行计算框架。系统验证和并行效率测试表明,该方法可准确预测冲击波壁面压力和靶体动态变形,成功复现薄板结构的典型裂纹扩展模式,并可用于开展复杂夹层板毁伤全过程模拟。在超过500万个粒子的复杂流固耦合场景中,8卡RTX4090相比单卡RTX4090加速比为4.13,并行效率为51.6%,实际计算时间可以压缩到近1 h。同时,多GPU并行与传统CPU (central processing unit)并行相比,加速比可达9倍以上。
  • 图  1  PD-SPH耦合模型示意图

    Figure  1.  Schematic diagram of PD-SPH coupled model

    图  2  PD-SPH的多GPU并行计算流程

    Figure  2.  Multi-GPU parallel computing process of PD-SPH

    图  3  非药式水下爆炸冲击波加载装置

    Figure  3.  Non-explosive underwater explosion shock wave loading device

    图  4  非药式水下爆炸装置冲击波波阵面时程

    Figure  4.  Front shock wave evolution of a non-explosive underwater shock device

    图  5  不同加载速度下靶板中心的压力时程曲线和初始压力峰值随飞片冲击速度的变化

    Figure  5.  Pressure histories and pressure peak-velocity curves measured at the center of the plate at different impact velocities

    图  6  不同方法得到的圆盘中心点位移和速度曲线

    Figure  6.  Deflection and velocity-time histories obtained by using different methods

    图  7  典型时刻的靶体变形云图(位移模量云图,单位:mm)

    Figure  7.  Diagram of target deformation at different times

    图  8  不同飞片冲击速度下薄板JC模型损伤变量云图

    Figure  8.  Damage cloud images of thin plates at different flyer impact velocities

    图  9  格栅夹层结构PD粒子分布及格栅单元尺寸

    Figure  9.  PD particle distribution in the grid sandwich structure and grid cell size

    图  10  水下爆炸冲击波作用下格栅夹层板背气板中间挠度时程曲线

    Figure  10.  Middle deflection history curves of back-air plate of grid sandwich structure subjected to underwater explosion shock wave

    图  11  飞片速度500 m/s下格栅夹层板典型时刻速度和损伤云图

    Figure  11.  Velocity and damage cloud contours of the grid sandwich structure subjected to flyer impact velocities 500 m/s at typical times(飞片速度500 m/s?)

    图  12  不同飞片速度下格栅夹层板上下板的等效塑性应变分布

    Figure  12.  Equivalent plastic strain distribution of the upper and lower plates of the grid sandwich panel at different flyer impact velocities

    表  1  靶体材料的Johnson-Cook模型参数[29]

    Table  1.   Parameters of Johnson-Cook model for target material[29]

    E/GPa ν ρ/(kg·m−3) AJC/MPa BJC/MPa NJC $ {\dot{\varepsilon }}_{\text{0}} $/s−1
    73.4 0.33 2800 167 444 0.44 0.00125
    CJC Dc Dth T0/K MJC Tm /K D1
    0.015 1.0 0.12 293.0 2.31 775 0.013
    D2 D3 D4 D5
    0.013 −0.5 −0.011 0
    下载: 导出CSV

    表  2  模拟时长0.6 ms的不同CPU/GPU下的计算时间

    Table  2.   Computation time on different CPU/GPU with a simulation duration of 0.6 ms

    CPU/GPU数量 配置 计算耗时/min 加速比
    1 AMD EPYC 9654(96核) 624 0.59
    2 RTX3090 371 1.00
    3 4*RTX3090 152 2.44
    4 4*RTX4090 69 5.38
    下载: 导出CSV

    表  3  不同GPU配置下的格栅夹层薄板破坏全过程模拟的计算耗时

    Table  3.   Computation time of the whole process of grid sandwich thin-wall structure for different GPUs

    GPU数量配置计算耗时/min加速比并行效率/%
    1RTX40903391.00100.0
    44*RTX40901143.0877.0
    88*RTX4090824.1351.6
    下载: 导出CSV
  • [1] DESHPANDE V S, HEAVER A, Fleck N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. DOI: 10.1098/rspa.2005.1604.
    [2] TAYLOR G I. The pressure and impulse of submarine explosion waves on plates [M]//BATCHELOR G KThe Scientific Papers of Sir Geoffrey Ingram Taylor. Cambridge: Cambridge University Press, 1963: 287-303.
    [3] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7.
    [4] KAZEMAHVAZI S, RADFORD D, DESHPANDE V, et al. Dynamic failure of clamped circular plates subjected to an underwater shock [J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2007–2023. DOI: 10.2140/jomms.2007.2.2007.
    [5] 任鹏, 张伟, 黄威, 等. 非药式水下爆炸冲击波加载装置研究 [J]. 爆炸与冲击, 2014, 34(3): 334–339. DOI: 10.11883/1001-1455(2014)03-0334-06.

    REN P, ZHANG W, HUANG W, et al. Research on non-explosive underwater shock loading device [J]. Explosion and Shock Waves, 2014, 34(3): 334–339. DOI: 10.11883/1001-1455(2014)03-0334-06.
    [6] 周章涛, 刘建湖, 刘国振, 等. 水下爆炸空化研究进展 [J]. 装备环境工程, 2023, 20(9): 12–25. DOI: 10.7643/issn.1672-9242.2023.09.002.

    ZHOU Z T, LIU J H, LIU G Z, et al. Research progress of underwater explosion cavitation [J]. Equipment Environmental Engineering, 2023, 20(9): 12–25. DOI: 10.7643/issn.1672-9242.2023.09.002.
    [7] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真 [J]. 应用数学和力学, 2021, 42(1): 1–14. DOI: 10.21656/1000-0887.410262.

    LIU Z L, CHU D Y, WANG T, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading [J]. Applied Mathematics and Mechanics, 2021, 42(1): 1–14. DOI: 10.21656/1000-0887.410262.
    [8] MONAGHAN J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399–406. DOI: 10.1006/jcph.1994.1034.
    [9] LIU M B, ZHANG Z L. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions [J]. Science China Physics, Mechanics & Astronomy, 2019, 62(8): 984701. DOI: 10.1007/s11433-018-9357-0.
    [10] 周若璞, 曾治鑫, 张雄. 超高速碰撞下相变效应的交错网格物质点法研究 [J]. 计算力学学报, 2024, 41(1): 81–90. DOI: 10.7511/jslx20230816006.

    ZHOU R P, ZENG Z X, ZHANG X. The staggered grid material point method (SGMP) simulation of phase transformation in hyper-velocity impact [J]. Chinese Journal of Computational Mechanics, 2024, 41(1): 81–90. DOI: 10.7511/jslx20230816006.
    [11] SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179–196. DOI: 10.1016/0045-7825(94)90112-0.
    [12] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
    [13] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用 [J]. 力学进展, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002.

    HUANG D, ZHANG Q, QIAO P Z, et al. A review on peridynamics (PD) method and its applications [J]. Advances in Mechanics, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002.
    [14] 吴远丽, 刘立胜, 赖欣, 等. 陶瓷复合结构抗侵彻行为的近场动力学研究 [J]. 计算机仿真, 2021, 38(10): 268–274. DOI: 10.3969/j.issn.1006-9348.2021.10.054.

    WU Y L, LIU L S, LAI X, et al. Peridynamics simulation of ceramic composite structures against penetration [J]. Computer Simulation, 2021, 38(10): 268–274. DOI: 10.3969/j.issn.1006-9348.2021.10.054.
    [15] 陈洋, 王肇喜, 翟师慧, 等. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.

    CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J]. Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
    [16] 王涵, 黄丹, 徐业鹏, 等. 非常规态型近场动力学热黏塑性模型及其应用 [J]. 力学学报, 2018, 50(4): 810–819. DOI: 10.6052/0459-1879-18-113.

    WANG H, HUANG D, XU Y P, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810–819. DOI: 10.6052/0459-1879-18-113.
    [17] 马福临, 杨娜娜, 赵天佑, 等. 冲击波-破片群联合作用下舰船复合材料结构近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.

    MA F L, YANG N N, ZHAO T Y, et al. Peridynamic damage simulation of ship composite structures subjected to combined action of shock wave and fragments [J]. Explosion and Shock Waves, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.
    [18] SUN P N, LE TOUZÉ D, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 2: extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations [J]. Journal of Computational Physics, 2021, 426: 109936. DOI: 10.1016/j.jcp.2020.109936.
    [19] LIANG C, HUANG W X, CHEN D. A pressure-dependent adaptive resolution scheme for smoothed particle hydrodynamics simulation of underwater explosion [J]. Ocean Engineering, 2023, 270: 113695. DOI: 10.1016/j.oceaneng.2023.113695.
    [20] 姚学昊, 陈丁, 武立伟, 等. 流固耦合破坏分析的多分辨率PD-SPH方法 [J]. 力学学报, 2022, 54(12): 3333–3343. DOI: 10.6052/0459-1879-22-268.

    YAO X H, CHEN D, WU L W, et al. A multi-resolution PD-SPH coupling approach for structural failure under fluid-structure interaction [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333–3343. DOI: 10.6052/0459-1879-22-268.
    [21] 时浩天, 郭力. 模拟流体冲击致结构破坏问题的SPH-PD耦合方法 [J]. 振动与冲击, 2022, 41(17): 170–176,203. DOI: 10.13465/j.cnki.jvs.2022.17.021.

    SHI H T, GUO L. SPH-PD coupled method for simulation of structure failure impacted by fluid [J]. Journal of Vibration and Shock, 2022, 41(17): 170–176,203. DOI: 10.13465/j.cnki.jvs.2022.17.021.
    [22] SUN W K, ZHANG L W, LIEW K M. A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113298. DOI: 10.1016/j.cma.2020.113298.
    [23] SHI H T, YUAN G Y, NI B Y, et al. Quasi-brittle ice breaking mechanisms by high-velocity water jet impacts: an investigation based on PD-SPH coupling model and experiments [J]. Journal of the Mechanics and Physics of Solids, 2024, 191: 105783. DOI: 10.1016/j.jmps.2024.105783.
    [24] HUANG X P, ZHU B, CHEN Y M. A coupled and parallel peridynamics–SPH modeling and simulation of buried explosion induced soil fragmentation and cratering [J]. Computers and Geotechnics, 2024, 178: 106942. DOI: 10.1016/j.compgeo.2024.106942.
    [25] YAO X H, HUANG D. Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing [J]. Computers & Structures, 2022, 270: 106847. DOI: 10.1016/j.compstruc.2022.106847.
    [26] REN B, FAN H F, BERGEL G L, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves [J]. Computational Mechanics, 2015, 55(2): 287–302. DOI: 10.1007/s00466-014-1101-6.
    [27] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21: 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [28] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9/10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
    [29] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.

    REN P. Research on non-explosive underwater shock loading technique and blast resistant properties of aluminium alloy structures [D]. Harbin: Harbin Institute of Technology, 2014.
    [30] MARRONE S, ANTUONO M, COLAGROSSI A, et al. δ-SPH model for simulating violent impact flows [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13/14/15/16): 1526–1542. DOI: 10.1016/j.cma.2010.12.016.
    [31] CHEN D, HUANG W X, LIANG C. A SPH method of high accuracy and efficiency for low and medium Reynolds number flow problems [J]. Computational Particle Mechanics, 2024, 11(4): 1613–1626. DOI: 10.1007/s40571-023-00682-y.
    [32] XU J G, WU G, FENG D C, et al. Probabilistic multi-hazard fragility analysis of RC bridges under earthquake-tsunami sequential events [J]. Engineering Structures, 2021, 238: 112250. DOI: 10.1016/j.engstruct.2021.112250.
    [33] LIU M B, XIE W P, LIU G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29(12): 1252–1270. DOI: 10.1016/j.apm.2005.05.003.
    [34] CHEN D, YAO X H, HUANG D, et al. A multi-resolution smoothed particle hydrodynamics with multi-GPUs acceleration for three-dimensional fluid-structure interaction problems [J]. Ocean Engineering, 2024, 296: 117017. DOI: 10.1016/j.oceaneng.2024.117017.
    [35] GEBARD G, Slater H. The impact tube: a new experimental technique for applying impulse loads [C]//TATNALL F G. Symposium on Impact Testing. Phila: ASTM, 1956: 94–109. DOI: 10.1520/STP47581S.
    [36] 陈丁, 黄文雄, 黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用 [J]. 岩土力学, 2024, 45(3): 885–894. DOI: 10.16285/j.rsm.2023.0353.

    CHEN D, HUANG W X, HUANG D. A frictional contact algorithm in smoothed particle method with application in large deformation of soils [J]. Rock and Soil Mechanics, 2024, 45(3): 885–894. DOI: 10.16285/j.rsm.2023.0353.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  32
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-17
  • 修回日期:  2025-09-21
  • 网络出版日期:  2025-09-30

目录

    /

    返回文章
    返回