• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

砂砾土中爆炸模型试验相似材料性能测试及配制方法海

王海生 管龙华 朱斌 卢强 丁洋 李俊超 汪玉冰 李伟俊 逄铮

王海生, 管龙华, 朱斌, 卢强, 丁洋, 李俊超, 汪玉冰, 李伟俊, 逄铮. 砂砾土中爆炸模型试验相似材料性能测试及配制方法海[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0290
引用本文: 王海生, 管龙华, 朱斌, 卢强, 丁洋, 李俊超, 汪玉冰, 李伟俊, 逄铮. 砂砾土中爆炸模型试验相似材料性能测试及配制方法海[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0290
WANG Haisheng, GUAN Longhua, ZHU Bin, LU Qiang, DING Yang, LI Junchao, WANG Yubing, LI Weijun, PANG Zheng. Performance testing and preparation methods of similitude materials for explosion modeling in gravelly soil[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0290
Citation: WANG Haisheng, GUAN Longhua, ZHU Bin, LU Qiang, DING Yang, LI Junchao, WANG Yubing, LI Weijun, PANG Zheng. Performance testing and preparation methods of similitude materials for explosion modeling in gravelly soil[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0290

砂砾土中爆炸模型试验相似材料性能测试及配制方法海

doi: 10.11883/bzycj-2025-0290
基金项目: 国家自然科学基金卓越研究群体项目(52588202)
详细信息
    作者简介:

    王海生(1988- ),男,硕士,工程师,22312001@zju.edu.cn

    通讯作者:

    李俊超(1988- ),男,博士,高级实验师,lijunchao@zju.edu.cn

  • 中图分类号: O389

Performance testing and preparation methods of similitude materials for explosion modeling in gravelly soil

  • 摘要: 超重力离心模型试验是模拟原型爆炸效应的有效手段,其成功应用依赖于能够复现原状土动力响应的相似土样。针对砂砾土爆炸离心模拟中存在的粒径效应与材料相似性难题,建立一套系统的相似土样配制与验证方法。通过理论分析,将影响爆炸地冲击效应的关键土性参数聚焦于密度和波速(波阻抗),而控制这些参数的核心是土体的级配特征。采用剔除法、等量替代法、相似级配法和混合法4种缩尺方法制备了12种不同最大粒径的相似土样,通过孔隙比试验和有效围压下的弯曲元测试,揭示了砂砾土极孔隙比与细粒含量、平均粒径的量化关系,进而建立了小应变弹性模量的经验预测模型。通过对比模型预测的波速与原位实测数据,结果表明:不均匀系数、细粒含量和平均粒径是实现砂砾土爆炸动力相似的关键控制指标;采用等量替代法配制的最大粒径为10 mm的相似土样,在上述指标上与原状土最等效。基于此相似土样的超重力离心爆炸试验进一步证实,爆源平面内的归一化峰值加速度衰减规律与原位数据高度一致。通过控制关键级配指标并采用等量替代法,可成功配制出在爆炸动力响应上与原状砂砾土等效的相似材料,从而为相关领域的离心机模型试验提供切实可行的技术途径。
  • 图  1  原状土筛分后的颗粒照片

    Figure  1.  Photos of particles after sieving undisturbed soil

    图  2  各缩尺试样及原状土的级配曲线

    Figure  2.  Grading curves of each scale sample and undisturbed soil

    图  3  emaxemine0wd50的拟合关系

    Figure  3.  Fitting relationship between emax, emin, e0 and w, d50

    图  4  emaxeminwd50的拟合关系

    Figure  4.  Fitting relationship between emax, emin and w, d50

    图  5  GDSTTS静三轴仪试验系统和弯曲元测试系统

    Figure  5.  GDSTTS static triaxial test system and bending element test system

    图  6  试样D-10的P波、S波测试时程曲线

    Figure  6.  P-wave and S-wave test time-history curves of specimen D-10

    图  7  P波、S波与围压的关系

    Figure  7.  Wave velocity of P- and S-wave as a function of confining pressure

    图  8  vpvs关系拟合曲线

    Figure  8.  Fitting curve of the relationship between vp and vs

    图  9  归准化Mmax/f(e)、Gmax/f(e)与有效围压σ'/pa的关系

    Figure  9.  Relationship between double normalized Mmax/f(e), Gmax/f(e) and effective confining pressure σ'/pa

    图  10  应力指数nGnMCu的关系

    Figure  10.  Relationship between stress index nG, nM and Cu

    图  11  参数AMAGCud50的拟合

    Figure  11.  Parameters AM and AG are fitted with Cu and d50

    图  12  vs的实测值[37]与预测结果的对比

    Figure  12.  Comparison of measured vs[37] and predicted wave velocity

    图  13  离心模型布置

    Figure  13.  Centrifugal test model layout

    图  14  原位现场试验传感器及爆源布置[31]

    Figure  14.  In-situ instrumentation and charge layout[31]

    图  15  原位[31]与离心模型试验的比加速度衰减关系

    Figure  15.  Relationship between scaled acceleration attenuation from in-situ[31] and centrifuge model tests

    表  1  原状土及相似土参数

    Table  1.   Parameters of undisturbed soil and similar soil

    试样 dmax/mm w/% ρmax/(g·cm-3) ρmin/(g·cm−3) d50/mm Cu Cc Dr ρs/(g·cm−3) emax emin e0
    YS-40 40 47.50 2.224 1.485 2.45 23.53 1.40 0.83 2.05 0.865 0.246 0.351
    T-20 20 50.00 2.236 1.563 2.00 20.40 1.33 0.83 2.084 0.772 0.239 0.329
    D-20 20 47.50 2.226 1.560 2.25 23.53 1.40 0.83 2.075 0.776 0.244 0.335
    X-20 20 62.70 2.22 1.552 1.13 23.47 1.34 0.83 2.069 0.784 0.248 0.339
    T-10 10 56.30 2.233 1.549 1.56 15.27 1.19 0.83 2.077 0.788 0.240 0.334
    D-10 10 47.50 2.228 1.562 2.20 22.07 1.46 0.83 2.077 0.774 0.243 0.333
    X-10 10 78.50 2.202 1.448 0.56 24.17 1.41 0.83 2.023 0.913 0.258 0.369
    H-10 10 62.70 2.245 1.515 1.12 23.47 1.34 0.83 2.075 0.828 0.234 0.335
    T-5 5 70.00 2.213 1.491 1.05 19.33 2.03 0.83 2.045 0.858 0.252 0.355
    D-5 5 61.50 2.230 1.532 1.48 12.80 2.22 0.83 2.070 0.808 0.242 0.338
    X-5 5 91.10 2.110 1.331 0.28 27.50 1.72 0.83 1.919 1.082 0.313 0.444
    H1-5 5 65.00 2.213 1.493 1.10 22.13 1.42 0.83 2.045 0.855 0.252 0.354
    H2-5 5 67.60 2.218 1.497 1.00 20.00 1.35 0.83 2.050 0.850 0.249 0.351
    下载: 导出CSV

    表  2  不同试样模型参数AGAMR2

    Table  2.   Model parameters AG, AM and R2 of different styles

    试样 AG nG R2 AM nM R2
    T-10 36.29 0.621 0.99 202.62 0.477 0.99
    D-10 30.33 0.666 0.99 206.11 0.490 0.99
    X-10 37.15 0.678 0.99 224.62 0.500 0.99
    H-10 34.49 0.67 0.99 224.85 0.495 0.99
    T-5 31.78 0.641 0.99 207.93 0.486 0.99
    D-5 29.45 0.606 0.99 200.15 0.462 0.99
    X-5 46.98 0.708 0.99 269.72 0.508 0.99
    H2-5 36.72 0.645 0.99 182.22 0.487 0.98
    下载: 导出CSV

    表  3  台湾花莲地区场地土参数[37]

    Table  3.   Soil parameters of the Hualien site in Taiwan[37]

    试样深度/mρdew/%d50/mmCuσ'/kPaG/MPavs/(m·s−1)vs0/(m·s−1)
    S2-1a3.19~3.391 5000.832100.000.161.84958.20196.9185~211
    S1-2a4.49~4.692 3400.15965.002.00147.069156.10258.2226~263
    S1-2c5.38~5.582 4500.10040.004.00300.088230.20328.7294~327
    S2-5a9.90~10.102 2400.21457.800.94141.2137295.86363.4331~400
    下载: 导出CSV

    表  5  离心模型试验工况

    Table  5.   Test conditions

    试验爆源当量/g爆源埋深/mm模型高度/mm重力加速度备注
    CE-11.080450100g浅埋
    CE-21.0300670100g深埋
    下载: 导出CSV

    表  4  离心模型比尺

    Table  4.   Centrifugal model scales

    物理量 量纲 相似比尺(原型/模型)
    重力加速度 LT−2 1/N
    线性尺寸 L N
    应力/压强 ML−1T−2 1
    密度 ML−3 1
    质量 M N3
    能量 ML2T−2 N3
    下载: 导出CSV
  • [1] 杨峰, 翟红波, 苏健军, 等. 浅埋爆炸下爆坑和冲击波特性研究进展 [J]. 工程爆破, 2023, 29(5): 86–95,119. DOI: 10.19931/j.eb.20220098.

    YANG F, ZHAI H B, SU J J, et al. Research progress of crater and shock wave characteristics under shallow buried condition [J]. Engineering Blasting, 2023, 29(5): 86–95,119. DOI: 10.19931/j.eb.20220098.
    [2] CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution [J]. Science China Technological Sciences, 2022, 65(12): 2791–2808. DOI: 10.1007/s11431-022-2125-x.
    [3] 马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究 [J]. 岩石力学与工程学报, 2011, 30(S1): 3172–3178.

    MA L Q, ZHANG J M. Centrifugal model testing study of explosion-induced craters and propagation of ground shock in clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3172–3178.
    [4] 管龙华, 卢强, 赵凤奎, 等. 砂土爆炸成坑离心模型试验相似律研究 [J]. 岩土工程学报, 2024, 46(7): 1462–1470. DOI: 10.11779/CJGE20230751.

    GUAN L H, LU Q, ZHAO F K, et al. Scaling laws for centrifuge modelling of explosion-induced cratering in sand [J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1462–1470. DOI: 10.11779/CJGE20230751.
    [5] 岳松林, 邱艳宇, 范鹏贤, 等. 岩石中爆炸成坑效应的模型试验方法及对比分析 [J]. 岩石力学与工程学报, 2014, 33(9): 1925–1931. DOI: 10.13722/j.cnki.jrme.2014.09.024.

    YUE S L, QIU Y Y, FAN P X, et al. Modeling experiment methods for cratering effects of explosions in rocks and comparative analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1925–1931. DOI: 10.13722/j.cnki.jrme.2014.09.024.
    [6] TAYLOR R N. Geotechnical centrifuge technology [M]. London: Blackie Academic & Professional, 1995.
    [7] 徐光明, 章为民. 离心模型中的粒径效应和边界效应研究 [J]. 岩土工程学报, 1996, 18(3): 80–86.
    [8] CRAIG W H. Simulation of foundations for offshore structures using centrifuge modelling [M]//BANERJEE P K, BUTTERFIELD R. Developments in Soil Mechanics and Foundation Engineering: Model Studies. London: Applied Science Publishers Ltd, 1983: 1–27.
    [9] OVESEN N K. The use of physical models in design: the scaling law relationship. Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering. 1979, 4: 318–323.
    [10] 杨俊杰, 柳飞, 丰泽康男, 等. 砂土地基承载力离心模型试验中的粒径效应研究 [J]. 岩土工程学报, 2007, 29(4): 477–483. DOI: 10.3321/j.issn:1000-4548.2007.04.002.

    YANG J J, LIU F, TOYOSAWA Y, et al. Particle size effects on bearing capacity of sandy ground in centrifugal tests [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 477–483. DOI: 10.3321/j.issn:1000-4548.2007.04.002.
    [11] 杜延龄, 韩连兵. 土工离心模型试验技术 [M]. 北京: 中国水利水电出版社, 2010.
    [12] 谢述春, 姜春兰, 王在成, 等. 多层混凝土介质内爆炸相似性分析 [J]. 兵工学报, 2019, 40(6): 1198–1206. DOI: 10.3969/j.issn.1000-1093.2019.06.010.

    XIE S C, JIANG C L, WANG Z C, et al. Analysis of similarity law of explosion in multi-layer concrete medium [J]. Acta Armamentarii, 2019, 40(6): 1198–1206. DOI: 10.3969/j.issn.1000-1093.2019.06.010.
    [13] 徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.

    XU X H, QIU Y Y, WANG M Y, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
    [14] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123-2019 [S]. 北京: 中国计划出版社, 2019: 317–320.

    Ministry of Housing and Urban-Rural Development of the Peopleʼs Republic of China. Standard for geotechnical testing method: GB/T 50123-2019 [S]. Beijing: China Planning Press, 2019: 317–320.
    [15] MENQ F Y. Dynamic properties of sandy and gravelly soils [D]. Austin: University of Texas at Austin, 2003.
    [16] HASSAN N A, NGUYEN N S, MAROT D, et al. Consequences of scalping and scalping/replacement procedures on strength properties of coarse-grained gap-graded soils [J]. Canadian Geotechnical Journal, 2022, 59(10): 1819–1832. DOI: 10.1139/cgj-2021-0504.
    [17] SHIN B. Effects of oversized particles on the dynamic properties of sand specimens evaluated by resonant column testing [D]. Austin: University of Texas at Austin, 2014.
    [18] 胡哲, 朱俊高, 余挺, 等. 粗颗粒土级配混合法缩尺后力学性质变化规律研究 [J]. 能源与环保, 2017, 39(9): 37–41,46. DOI: 10.19389/j.cnki.1003-0506.2017.09.008.

    HU Z, ZHU J G, YU T, et al. Changing laws of mechanical properties of coarse grained soil after mixed scaling [J]. China Energy and Environmental Protection, 2017, 39(9): 37–41,46. DOI: 10.19389/j.cnki.1003-0506.2017.09.008.
    [19] US Department of the Army. TM 5-855-1 Fundamentals of protective design for conventional weapons [S]. Washington: US Department of the Army, 1986.
    [20] 胡恒山. 拉梅常数的力学意义与剪切模量出现于纵波速度公式的原因 [J]. 地球物理学进展, 2018, 33(1): 219–222. DOI: 10.6038/pg2018BB0432.

    HU H S. Note on the Lamé constant and the reason for the presence of the shear modulus in the compressional wave speed formula [J]. Progress in Geophysics, 2018, 33(1): 219–222. DOI: 10.6038/pg2018BB0432.
    [21] 顾晓强, 杨峻, 黄茂松, 等. 干砂弹性参数测定的弯曲-伸展元试验 [J]. 岩土力学, 2015, 36(S1): 220–224,229. DOI: 10.16285/j.rsm.2015.S1.037.

    GU X Q, YANG J, HUANG M S, et al. Measurement of elastic parameters of dry sand using bender-extender element [J]. Rock and Soil Mechanics, 2015, 36(S1): 220–224,229. DOI: 10.16285/j.rsm.2015.S1.037.
    [22] 吴琪, 杨文保, 朱雨萌, 等. 砂-粉混合料小应变剪切模量弯曲元试验研究 [J]. 东南大学学报(自然科学版), 2018, 48(6): 1059–1067. DOI: 10.3969/j.issn.1001-0505.2018.06.011.

    WU Q, YANG W B, ZHU Y M, et al. Experimental study on small-strain shear modulus of sand-silt mixtures by bender element testing [J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6): 1059–1067. DOI: 10.3969/j.issn.1001-0505.2018.06.011.
    [23] 梁晓敏, 顾晓强, 翟崇朴, 等. 颗粒材料各向异性弹性波速与微观组构CT试验研究 [J]. 岩土工程学报, 2024, 46(7): 1398–1407. DOI: 10.11779/CJGE20230425.

    LIANG X M, GU X Q, ZHAI C P, et al. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography [J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398–1407. DOI: 10.11779/CJGE20230425.
    [24] 陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验 [J]. 岩土工程学报, 2006, 28(7): 874–880. DOI: 10.3321/j.issn:1000-4548.2006.07.013.

    CHEN Y M, ZHOU Y G, HUANG B. International parallel test on the measurement of shear modulus of sand using bender elements [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874–880. DOI: 10.3321/j.issn:1000-4548.2006.07.013.
    [25] 吴琪, 李晓雪, 杨文保, 等. 细粒含量对饱和砂类土小应变剪切模量的影响 [J]. 哈尔滨工程大学学报, 2019, 40(7): 1297–1303. DOI: 10.11990/jheu.201805067.

    WU Q, LI X X, YANG W B, et al. Influence of the fines content on the small-strain shear modulus characteristics of saturated sandy soils [J]. Journal of Harbin Engineering University, 2019, 40(7): 1297–1303. DOI: 10.11990/jheu.201805067.
    [26] VIGGIANI G, ATKINSON J H. Interpretation of bender element tests [J]. Géotechnique, 1995, 45(1): 149–154. DOI: 10.1680/geot.1995.45.1.149.
    [27] JAMIOLKOWSKI M, LEROUEIL S, LO PRESTI D C. Design parameters from theory to practice [C]//Proceedings of the International Conference on Geotechnical Engineering for Coastal Development. Yokohama: Port & Harbour Research Institute, 1991(2): 877–917.
    [28] HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses [J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(2): 27–42. DOI: 10.1061/JSFEAQ.0000865.
    [29] WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404–1418. DOI: 10.1061/(ASCE)GT.1943-5606.0000096.
    [30] LIU X, YANG J, WANG G H, et al. Small-strain shear modulus of volcanic granular soil: an experimental investigation [J]. Soil Dynamics and Earthquake Engineering, 2016, 86: 15–24. DOI: 10.1016/j.soildyn.2016.04.005.
    [31] 卢强, 丁洋, 李进, 等. 冲积土中封闭填实爆炸自由场应力波传播特性的实验研究 [J]. 现代应用物理, 2023, 14(4): 040102. DOI: 10.12061/j.issn.2095-6223.2023.040102.

    LU Q, DING Y, LI J, et al. Experimental study of free field stress wave propagation in enclosed packed soil [J]. Modern Applied Physics, 2023, 14(4): 040102. DOI: 10.12061/j.issn.2095-6223.2023.040102.
    [32] 中华人民共和国建设部. GB/T 50145-2007 土的工程分类标准 [S]. 北京: 中国计划出版社, 2008: 6.

    Ministry of Construction of the Peopleʼs Republic of China. GB/T50145-2007 Standard for engineering classification of soil [S]. Beijing: China Planning Press, 2008: 6.
    [33] 郭云鹏. 基于剪切波速的粗颗粒土路基填料压实密度研究 [D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001034.

    GUO Y P. Study on compaction density of subgrade filler based on shear wave velocity [D]. Changsha: Central South University, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001034.
    [34] CHANG C S, WANG J Y, GE L. Modeling of minimum void ratio for sand–silt mixtures [J]. Engineering Geology, 2015, 196: 293–304. DOI: 10.1016/j.enggeo.2015.07.015.
    [35] 杭天柱, 郭冰冰, 肖兴, 等. 粗-细粒混合料最小孔隙比的经验预测模型 [J]. 土木工程学报, 2025, 58(9): 131–140. DOI: 10.15951/j.tmgcxb.24010063.

    HANG T Z, GUO B B, XIAO X, et al. Influential factors and empirical formula for predicting minimum void ratio of fine-coarse mixtures [J]. China Civil Engineering Journal, 2025, 58(9): 131–140. DOI: 10.15951/j.tmgcxb.24010063.
    [36] KUDO, K. Static mechanical properties of gravel ground, part 1. influence of gravel content on mechanical properties [R]. Report of Central Research Institute of Electric Power Industry, 1990.
    [37] TANAKA Y, KUDO K, NISHI K, et al. Small strain characteristics of soils in Hualien, Taiwan [J]. Soils and Foundations, 2000, 40(3): 111–125. DOI: 10.3208/sandf.40.3_111.
    [38] 贝克. 爆炸危险性及其评估 [M]. 张国顺, 译. 北京: 群众出版社, 1988.

    BAKER W E. The hazards of explosion and its assessment [M]. Translated by ZHANG G S. Beijing: Public Press, 1988.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  23
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-04
  • 修回日期:  2025-11-03
  • 网络出版日期:  2025-11-04

目录

    /

    返回文章
    返回