双空孔间距对爆破槽腔断面大小的影响

李祥龙 张志平 王建国 李强 王子琛

李祥龙, 张志平, 王建国, 李强, 王子琛. 双空孔间距对爆破槽腔断面大小的影响[J]. 爆炸与冲击, 2022, 42(11): 115201. doi: 10.11883/bzycj-2021-0471
引用本文: 李祥龙, 张志平, 王建国, 李强, 王子琛. 双空孔间距对爆破槽腔断面大小的影响[J]. 爆炸与冲击, 2022, 42(11): 115201. doi: 10.11883/bzycj-2021-0471
LI Xianglong, ZHANG Zhiping, WANG Jianguo, LI Qiang, WANG Zichen. Influence of double empty hole spacing on section size of blasting chamber[J]. Explosion And Shock Waves, 2022, 42(11): 115201. doi: 10.11883/bzycj-2021-0471
Citation: LI Xianglong, ZHANG Zhiping, WANG Jianguo, LI Qiang, WANG Zichen. Influence of double empty hole spacing on section size of blasting chamber[J]. Explosion And Shock Waves, 2022, 42(11): 115201. doi: 10.11883/bzycj-2021-0471

双空孔间距对爆破槽腔断面大小的影响

doi: 10.11883/bzycj-2021-0471
基金项目: 国家自然科学基金(52274083);云南省重大科技专项(202202AG050014);云南省基础研究计划(202201AT070178)
详细信息
    作者简介:

    李祥龙(1981- ),男,博士,教授,博士生导师,lxl00014002@163.com

    通讯作者:

    王建国(1987- ),男,博士,副教授,wangjg0831@163.com

  • 中图分类号: O389

Influence of double empty hole spacing on section size of blasting chamber

  • 摘要: 为了探究空孔间距对巷道掘进掏槽爆破效果的影响,基于大红山铜矿某巷道建立有限元数值模型,计算双大直径空孔不同布孔间距条件下的掏槽爆破成腔断面积,并对最优方案开展现场验证。研究结果表明:空孔间距dv=15 cm时,槽腔断面积为0.1641 m2;当dv增加到dv=25 cm时,槽腔断面积为0.2116 m2,断面积增大28.94%;当 dv增加到35 cm时,槽腔断面面积为0.2436 m2,断面积增大15.1%;但当dv增大到45 cm时,槽腔面积为0.1740 m2,断面积减小17.8%;当dv增大到55 cm时,槽腔面积为0.0951 m2,断面积减小45.3%。对成腔断面积最大的空孔间距dv=35 cm的布孔方案进行现场试验,2号现场试验测得槽腔断面宽度、高度及断面积分别比模拟结果小4.0%、3.4%和4.98%,多次试验与模拟结果误差均在5%以内,能够为地下巷道掏槽爆破成腔体积预测的数值方法构建提供数据参考。
  • 图  1  装药孔与空孔的距离关系

    Figure  1.  Distance between charge hole and empty hole

    图  2  炮孔布置及二维模型网格划分图

    Figure  2.  Layout of blast holes and meshing of the two-dimensional model

    图  3  dv=15 cm时模型压力云图

    Figure  3.  Pressure contours of the model when dv=15 cm

    图  4  dv=25 cm时模型压力云图

    Figure  4.  Pressure contours of the model when dv=25 cm

    图  5  dv=35 cm时模型压力云图

    Figure  5.  Pressure contours of the model when dv=35 cm

    图  6  dv=45 cm时模型压力云图

    Figure  6.  Pressure contours of the model when dv=45 cm

    图  7  dv=55 cm时模型压力云图

    Figure  7.  Pressure contours of the model when dv=55 cm

    图  8  P点处的应力时程曲线

    Figure  8.  Stress time history curve at point P

    图  9  dv=15 cm时损伤破坏图

    Figure  9.  Damage failure diagram when dv=15 cm

    图  10  dv=25 cm时损伤破坏图

    Figure  10.  Damage failure diagram when dv=25 cm

    图  11  dv=35 cm时损伤破坏图

    Figure  11.  Damage failure diagram when dv=35 cm

    图  12  dv=45 cm时损伤破坏图

    Figure  12.  Damage failure diagram when dv=45 cm

    图  13  dv=55 cm时损伤破坏图

    Figure  13.  Damage failure diagram when dv=55 cm

    图  14  炸后槽腔外断面

    Figure  14.  The external section of the explosion cavity after explosion

    图  15  现场掏槽爆破槽腔断面图

    Figure  15.  Cross-sectional view of the cavity of the on-site cutting blasting cavity

    图  16  现场断面与模拟结果对比

    Figure  16.  Comparison of the site section with the simulation results

    表  1  大红山大理岩HJC本构模型参数

    Table  1.   Dahongshan marble HJC constitutive model parameters

    ρ0/(kg·m−3)ƒc/MPaABCSmaxGTD1D2
    294170.590.521.170.0163422.277.680.0361
    pcrush/MPaµcrushplock/GPaµplockK1K2K3EFminNFS
    23.650.000760.1590.0121323600.010.790.085
    注:ρ0为岩石密度,ƒc为静态单轴抗压强度,T为岩石最大拉应力,A为无量纲粘性强度系数,B为无量纲压力硬化系数,C为应变率系数,N为压力硬化指数,Smax为最大无量纲的等效应力,D1D2为损伤常数,EFmin为岩石最小塑性应变,µcrush为等效塑性应变增量,µplock塑性体积应变增量,K1K2K3分为压力常数,plock为压实后的静水压力,pcrush为弹性极限时静水压力值,G为剪切模量,FS失效参数。
    下载: 导出CSV

    表  2  炸药的状态方程参数

    Table  2.   HJC constitutive model parameters of explosive

    ρ1/(g·cm−3D0/(m·s−1A1/GPaB1/GPaR1R2ω
    1.34500214.40.1824.20.90.15
    注:D0为炸药爆速。
    下载: 导出CSV

    表  3  现场试验结果

    Table  3.   Field test results

    试验高度/cm宽度/cm面积/m2模拟面积误差/%
    146.663.90.24912.26
    242.564.70.2315-4.98
    342.166.30.2392−1.8
    451.562.70.25544.84
    下载: 导出CSV
  • [1] SUN B, ZHANG Z Y, MENG J L, et al. Research on deep-hole cutting blasting efficiency in blind shafting with high in-situ Stress environment using the method of SPH [J]. Mathematics, 2021, 9(24): 3242. DOI: 10.3390/math9243242.
    [2] LI X L, LI Q, WANG J G, et al. Influence of hole arrangement on the section of cavity formed by cutting blast [J]. Geofluids, 2021, 2021: 9080560. DOI: 10.1155/2021/9080560.
    [3] ZHANG H, LI T C, DU Y T, et al. Theoretical and numerical investigation of deep-hole cut blasting based on cavity cutting and fragment throwing [J]. Tunnelling and Underground Space Technology, 2021, 111: 103854. DOI: 10.1016/j.tust.2021.103854.
    [4] SUI J B, REN F Y, CAO J L, et al. Numerical analysis for the caving characteristics of rock mass with inclined joints in caving mining [J]. Advances in Civil Engineering, 2021, 2021: 9917744. DOI: 10.1155/2021/9917744.
    [5] 单仁亮, 黄宝龙, 高文蛟, 等. 岩巷掘进准直眼掏槽爆破新技术应用实例分析 [J]. 岩石力学与工程学报, 2011, 30(2): 224–232.

    SHAN R L, HUANG B L, GAO W J, et al. Case studies of new technology application of quasi-parallel cut blasting in rock roadway drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 224–232.
    [6] 汪海波, 宗琦, 赵要才. 立井大直径中空孔直眼掏槽爆炸应力场数值模拟分析与应用 [J]. 岩石力学与工程学报, 2015, 34(S1): 3223–3229. DOI: 10.13722/j.cnki.jrme.2014.0296.

    WANG H B, ZONG Q, ZHAO Y C. Numerical analysis and application of large diameter cavity parallel cut blasting stress field in vertical shaft [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3223–3229. DOI: 10.13722/j.cnki.jrme.2014.0296.
    [7] LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [8] 钟波波, 李宏, 张永彬. 爆炸荷载作用下岩石动态裂纹扩展的数值模拟 [J]. 爆炸与冲击, 2016, 36(6): 825–831. DOI: 10.11883/1001-1455(2016)06-0825-07.

    ZHONG B B, LI H, ZHANG Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading [J]. Explosion and Shock Waves, 2016, 36(6): 825–831. DOI: 10.11883/1001-1455(2016)06-0825-07.
    [9] 张召冉, 陈华义, 矫伟刚, 等. 含空孔直眼掏槽空孔效应及爆破参数研究 [J]. 煤炭学报, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591.

    ZHANG Z R, CHEN H Y, JIAO W G, et al. Rock breaking mechanism and blasting parameters of straight-hole cutting with empty-hole [J]. Journal of China Coal Society, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591.
    [10] GAO J, XIE S Z, ZHANG X T, et al. Study on the 2D optimization simulation of complex five-hole cutting blasting under different lateral pressure coefficients [J]. Complexity, 2020, 2020: 40639518. DOI: 10.1155/2020/4639518.
    [11] 柴修伟, 李建国, 习本军, 等. 等体积空孔直眼掏槽槽腔形成过程及其分析 [J]. 爆破, 2020, 37(4): 48–52. DOI: 10.3963/j.issn.1001-487X.2020.04.008.

    CHAI X W, LI J G, XI B J, et al. Formation process and analysis of cavity by burn cut with equal volume empty hole [J]. Blasting, 2020, 37(4): 48–52. DOI: 10.3963/j.issn.1001-487X.2020.04.008.
    [12] 李启月, 吴正宇, 黄武林. 直眼掏槽空孔效应的计算模型改进与分析 [J]. 采矿与安全工程学报, 2018, 35(5): 925–930. DOI: 10.13545/j.cnki.jmse.2018.05.007.

    LI Q Y, WU Z Y, HUANG W L. Improvement and analysis of calculation model for empty hole effect in parallel cut [J]. Journal of Mining & Safety Engineering, 2018, 35(5): 925–930. DOI: 10.13545/j.cnki.jmse.2018.05.007.
    [13] 关振长, 朱凌枫, 俞伯林. 隧道掘进排孔爆破的精细化数值模拟 [J]. 振动与冲击, 2021, 40(11): 154–162. DOI: 10.13465/j.cnki.jvs.2021.11.022.

    GUAN Z C, ZHU L F, YU B L. Fine numerical simulation of row-hole blasting in tunnel excavation [J]. Journal of Vibration and Shock, 2021, 40(11): 154–162. DOI: 10.13465/j.cnki.jvs.2021.11.022.
    [14] MA J, LI X L, WANG J G, et al. Numerical simulation on selection of optimal delay time for precise delay blasting [J]. Shock and Vibration, 2021, 2021: 4593221. DOI: 10.1155/2021/4593221.
    [15] 张学民, 周贤舜, 王立川, 等. 大断面隧道钻爆冲击波的衰减规律 [J]. 爆炸与冲击, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.

    ZHANG X M, ZHOU X S, WANG L C, et al. Attenuation of blast wave in a large-section tunnel [J]. Explosion and Shock Waves, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.
    [16] 左进京, 杨仁树, 肖成龙, 等. 煤矿井巷中空孔掏槽爆破模型实验研究 [J]. 矿业科学学报, 2018, 3(4): 335–341. DOI: 10.19606/j.cnki.jmst.2018.04.003.

    ZUO J J, YANG R S, XIAO C L, et al. Model test of empty hole cut blasting in coal mine rock drivage [J]. Journal of Mining Science and Technology, 2018, 3(4): 335–341. DOI: 10.19606/j.cnki.jmst.2018.04.003.
    [17] 冷振东, 范勇, 卢文波, 等. 孔内双点起爆条件下的爆炸能量传输与破岩效果分析 [J]. 岩石力学与工程学报, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.

    LENG Z D, FAN Y, LU W B, et al. Explosion energy transmission and rock-breaking effect of in-hole dual initiation [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.
    [18] 雷振, 黄永辉, 陈文梦, 等. 爆炸冲击荷载下扩腔体积和能耗随抵抗线的变化规律研究 [J]. 振动与冲击, 2021, 40(4): 66–71. DOI: 10.13465/j.cnki.jvs.2021.04.010.

    LEI Z, HUANG Y H, CHEN W M, et al. A study on the variation of cavity volume and energy dissipation with resistance line under blast impact load [J]. Journal of Vibration and Shock, 2021, 40(4): 66–71. DOI: 10.13465/j.cnki.jvs.2021.04.010.
    [19] 李广涛, 乔登攀, 余贤斌, 等. 劈裂拉伸条件下大红山铜矿矿岩变形特性的试验研究 [J]. 安全与环境学报, 2017, 17(2): 463–467. DOI: 10.13637/j.issn.1009-6094.2017.02.013.

    LI G T, QIAO D P, YU X B, et al. Experimental investigation on the tensile deformation as a result of the brazilian test for the rocks of Dahongshan copper mine [J]. Journal of Safety and Environment, 2017, 17(2): 463–467. DOI: 10.13637/j.issn.1009-6094.2017.02.013.
    [20] WANG S, LI D Y, MITRI H, et al. Numerical simulation of hydraulic fracture deflection influenced by slotted directional boreholes using XFEM with a modified rock fracture energy model [J]. Journal of Petroleum Science and Engineering, 2020, 193: 107375. DOI: 10.1016/j.petrol.2020.107375.
    [21] 吴再海, 安龙, 齐兆军, 等. 基于LS-DYNA与PFC联合的岩体爆破数值模拟方法分析 [J]. 采矿与安全工程学报, 2021, 38(3): 609–614. DOI: 10.13545/j.cnki.jmse.2020.0133.

    WU Z H, AN L, QI Z J, et al. The numerical simulation method of rock mass blasting based on PFC combined with LS-DYNA [J]. Journal of Mining & Safety Engineering, 2021, 38(3): 609–614. DOI: 10.13545/j.cnki.jmse.2020.0133.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  680
  • HTML全文浏览量:  178
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回