远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证

胡志乐 马亮亮 吴昊 方秦

胡志乐, 马亮亮, 吴昊, 方秦. 远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证[J]. 爆炸与冲击, 2022, 42(11): 114201. doi: 10.11883/bzycj-2021-0499
引用本文: 胡志乐, 马亮亮, 吴昊, 方秦. 远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证[J]. 爆炸与冲击, 2022, 42(11): 114201. doi: 10.11883/bzycj-2021-0499
HU Zhile, MA Liangliang, WU Hao, FANG Qin. Optimization and verification of mesh size for air shock wave from large distance and near ground explosion[J]. Explosion And Shock Waves, 2022, 42(11): 114201. doi: 10.11883/bzycj-2021-0499
Citation: HU Zhile, MA Liangliang, WU Hao, FANG Qin. Optimization and verification of mesh size for air shock wave from large distance and near ground explosion[J]. Explosion And Shock Waves, 2022, 42(11): 114201. doi: 10.11883/bzycj-2021-0499

远距离近地面爆炸空气冲击波计算的网格尺寸优化与验证

doi: 10.11883/bzycj-2021-0499
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    胡志乐(1999- ),男,硕士研究生,huzhile@tongji.edu.cn

    通讯作者:

    吴 昊(1981- ),男,博士,教授,wuhaocivil@tongji.edu.cn

  • 中图分类号: O383

Optimization and verification of mesh size for air shock wave from large distance and near ground explosion

  • 摘要: 建筑结构上爆炸荷载的确定是进行结构动态响应和损伤破坏分析以及结构抗爆设计和加固的前提。考虑到空气爆炸冲击波远距离传播数值模拟计算效率和精度以及软硬件能力的平衡问题,通过确定和优化网格尺寸,从而为大型复杂街区爆炸冲击波荷载的数值模拟网格尺寸选取提供合理建议。针对汽车炸弹和弹药库等典型近地面爆炸场景,首先,使用AUTODYN软件分别开展比例距离为0.2~5.0 m/kg1/3和0.2~39.0 m/kg1/3的空中爆炸自由场和地面爆炸入射场超压和冲量的单一尺寸网格敏感性分析,并考虑软硬件对单元网格数量的限制,给出依赖比例距离的渐变网格尺寸建议。其次,基于映射算法和建议的渐变尺寸网格对地面爆炸入射场超压和冲量进行数值模拟,提出了比例距离大于10.0 m/kg1/3的峰值超压误差修正方法,并得到UFC 3-340-02规范的验证。最后,基于足尺房屋爆炸荷载分布试验共71个测点的超压和冲量时程数据,对提出的优化网格尺寸的计算精度和效率进行了验证。
  • 图  1  典型远距离近地面爆炸场景示意图

    Figure  1.  Schematic diagram of a typical long-distance near-ground explosion scenario

    图  2  一维和二维爆炸模型

    Figure  2.  1D and 2D blast models

    图  3  空中爆炸自由场峰值超压对比

    Figure  3.  Comparisons of peak overpressures in the free field of air explosion

    图  4  空中爆炸自由场最大冲量对比

    Figure  4.  Comparisons of the maximum impulses in the free field of air explosion

    图  5  地面爆炸入射场峰值超压对比

    Figure  5.  Comparisons of peak overpressures for ground explosion

    图  6  地面爆炸入射场最大冲量对比

    Figure  6.  Comparisons of the maximum impulses for ground explosion

    图  7  基于渐变网格的峰值超压结果对比

    Figure  7.  Comparisons of peak overpressures based on gradient mesh sizes

    图  8  基于渐变网格的最大冲量结果对比

    Figure  8.  Comparisons of the maximum impulses based on gradient mesh sizes

    图  9  文献[7]峰值超压修正方法

    Figure  9.  Peak overpressure modification method in Ref.[7]

    图  10  峰值超压修正方法与计算结果

    Figure  10.  Predicted peak overpressures with the improved method

    图  11  爆炸试验概况[14]

    Figure  11.  Test configuration[14]

    图  12  三维模拟阶段示意图

    Figure  12.  Schematic diagram in 3D simulation stage

    图  13  冲击波传播途径中测点峰值超压及最大冲量

    Figure  13.  Peak overpressures and maximum impulses at gauges in the path of blast wave propagation

    图  14  V2各截面测点反射峰值超压对比

    Figure  14.  Comparisons of reflected peak overpressures in V2 test

    图  15  V2各截面测点反射最大冲量对比

    Figure  15.  Comparisons of the maximum reflected impulses in V2 test

    图  16  V2反射超压时程曲线对比

    Figure  16.  Comparisons of reflected overpressure-time histories in V2 test

    图  17  V3各截面测点反射峰值超压对比

    Figure  17.  Comparisons of reflected peak overpressures in V3 test

    图  18  V3各截面测点反射最大冲量对比

    Figure  18.  Comparisons of the maximum reflected impulses in V3 test

    图  19  V3反射超压时程曲线对比

    Figure  19.  Comparisons of reflected overpressure-time histories in V3 test

    表  1  空中爆炸自由场单一网格尺寸建议

    Table  1.   Recommended mesh sizes of the free field of air explosion

    比例距离/(m·kg−1/3<0.40.4~0.60.6~4.04~5≥5
    网格尺寸/mm25102550
    下载: 导出CSV

    表  2  地面爆炸入射场网格尺寸和比例距离对应关系

    Table  2.   Relationship between mesh sizes and scaled distances for ground explosion

    网格尺寸/mm125102050100200500
    比例距离范围/(m·kg−1/30.2~1.00.2~1.40.2~4.00.2~4.01~151~391~391~391~39
    测点间距/(m·kg−1/30.10.20.20.21.01.01.01.01.0
    下载: 导出CSV

    表  3  地面爆炸入射场计算单一网格尺寸建议

    Table  3.   Recommended mesh sizes for ground explosion

    比例距离范围/(m·kg-1/3)≤0.40.4~0.60.6~1.01~22~5≥5
    网格尺寸/mm25102050100
    下载: 导出CSV

    表  4  网格尺寸和比例距离范围对应关系

    Table  4.   Relationship between mesh sizes and the scaled distance

    比例距离范围/(m·kg−1/30~0.10.1~0.20.2~0.50.5~1.01~22~55~1010~2020~50
    网格尺寸/mm125102050100200500
    下载: 导出CSV

    表  5  第二阶段各比例距离范围模型数据

    Table  5.   Model data of the second stage at different scaled distances

    比例距离范围/
    (m·kg−1/3
    网格尺寸/
    mm
    模型对称轴
    长度/mm
    模型地面
    长度/mm
    网格数量
    0.183~0.552 4001 800172 800
    0.5~1.0104 1003 500143 500
    1~2207 6007 000133 000
    ≥25021 60021 000181 440
    下载: 导出CSV
  • [1] LUCCIONI B, AMBROSINI D, DANESI R. Blast load assessment using hydrocodes [J]. Engineering Structures, 2006, 28(12): 1736–1744. DOI: 10.1016/j.engstruct.2006.02.016.
    [2] 曲树盛, 李忠献. 地铁车站内爆炸波的传播规律与超压荷载 [J]. 工程力学, 2010, 27(9): 240–247.

    QU S S, LI Z X. Propagation law and overpressure load of blast wave inside subway station [J]. Engineering Mechanics, 2010, 27(9): 240–247.
    [3] 金明. 新型护栏型防爆墙数值分析及设计方法研究 [D]. 天津: 天津大学, 2018.15–19.

    JIN M. Numerical analysis and design method of a new fence type blast wall [D]. Tianjin: Tianjin University, 2018:15–19.
    [4] 贾亮景. 城市复杂环境中爆炸波传播的模拟和建筑物的快速损伤评估 [D]. 天津: 天津大学, 2018.

    JIA L J. Simulation of the propagation of explosion wave in complex urban environment and rapid assess the damagement of buildings [D]. Tianjin: Tianjin University, 2018.
    [5] 匡志平, 刘中辉. 地面爆炸二维数值模拟的网格尺寸分析 [J]. 防护工程, 2021, 43(3): 26–30. DOI: 10.3969/j.issn.1674-1854.2021.03.004.

    KUANG Z, LIU Z. Mesh size analysis for two-dimensional numerical simulation of surface explosion [J]. Protective Engineering, 2021, 43(3): 26–30. DOI: 10.3969/j.issn.1674-1854.2021.03.004.
    [6] CHAPMAN T C, ROSE T A, SMITH P D. Blast wave simulation using AUTODYN2D: a parametric study [J]. International Journal of Impact Engineering, 1995, 16(5/6): 777–787. DOI: 10.1016/0734-743X(95)00012-Y.
    [7] SHI Y C, LI Z X, HAO H. Mesh size effect in numerical simulation of blast wave propagation and interaction with structures [J]. Transactions of Tianjin University, 2008, 14(6): 396–402. DOI: 10.1007/s12209-008-0068-9.
    [8] COWLER M S, QUAN X, FAIRLIE G E. A computational approach to assessing blast damage in urban centers using AUTODYN [C]//Problems Involving Thermal Hydraulics, Liquid Sloshing, and Extreme Loads on Structures. San Diego, California, USA: ASMEDC, 2004: 159–164.
    [9] LÖHNER R, BAUM J D. Calculating blast loads for civil engineering structures [M]. Springer Berlin Heidelberg, 2009. DOI: 10.1007/978-3-540-70805-6_24.
    [10] 方秦, 杨石刚, 陈力, 等. 天津港“8·12”特大火灾爆炸事故建筑物和人员损伤破坏情况及其爆炸威力分析 [J]. 土木工程学报, 2017, 50(3): 12–18.

    FANG Q, YANG S G, CHEN L, et al. Analysis on the building damage, personnel casualties and blast energy of the “8·12” explosion in Tianjin port [J]. China Civil Engineering Journal, 2017, 50(3): 12–18.
    [11] US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. Washington, USA: The US Department of Army, 2008.
    [12] Autodyn theory manual[M]. Pittsburgh, USA: Century Dynamics Inc., 2006.
    [13] US Army Corps of Engineers. Structures to resist the effects of accidental explosions: TM5-1300 [S]. Washington, USA: Department of the Army, 1990.
    [14] XIAO W F, ANDRAE M, STEYERER M, et al. Investigations of blast loads on a two-storeyed building with a gable roof: full-scale experiments and numerical study [J]. Journal of Building Engineering, 2021, 43: 103111. DOI: 10.1016/j.jobe.2021.103111.
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  127
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回