椭圆截面战斗部爆轰驱动壳体的断裂及毁伤特性

邓宇轩 张先锋 刘闯 刘均伟 李鹏程 盛强 肖川

邓宇轩, 张先锋, 刘闯, 刘均伟, 李鹏程, 盛强, 肖川. 椭圆截面战斗部爆轰驱动壳体的断裂及毁伤特性[J]. 爆炸与冲击, 2023, 43(9): 091412. doi: 10.11883/bzycj-2023-0135
引用本文: 邓宇轩, 张先锋, 刘闯, 刘均伟, 李鹏程, 盛强, 肖川. 椭圆截面战斗部爆轰驱动壳体的断裂及毁伤特性[J]. 爆炸与冲击, 2023, 43(9): 091412. doi: 10.11883/bzycj-2023-0135
DENG Yuxuan, ZHANG Xianfeng, LIU Chuang, LIU Junwei, LI Pengcheng, SHENG Qiang, XIAO Chuan. Casing fracture and damage characteristics of an elliptical cross-section warhead under explosive loading[J]. Explosion And Shock Waves, 2023, 43(9): 091412. doi: 10.11883/bzycj-2023-0135
Citation: DENG Yuxuan, ZHANG Xianfeng, LIU Chuang, LIU Junwei, LI Pengcheng, SHENG Qiang, XIAO Chuan. Casing fracture and damage characteristics of an elliptical cross-section warhead under explosive loading[J]. Explosion And Shock Waves, 2023, 43(9): 091412. doi: 10.11883/bzycj-2023-0135

椭圆截面战斗部爆轰驱动壳体的断裂及毁伤特性

doi: 10.11883/bzycj-2023-0135
基金项目: 国家自然科学基金(12141202,12202205)
详细信息
    作者简介:

    邓宇轩(1998- ),男,博士研究生,dengyuxuan103@163.com

    通讯作者:

    肖 川(1966- ),男,研究员,hll8611@126.com

  • 中图分类号: O385

Casing fracture and damage characteristics of an elliptical cross-section warhead under explosive loading

  • 摘要: 为研究椭圆截面战斗部爆轰驱动下壳体破片的形成机制和毁伤特性,设计了5种装药质量和壳体质量比相同而短长轴比不同的战斗部,开展了静爆威力试验,获得了椭圆截面战斗部破片径向速度分布规律,并结合细观观测方法分析了爆轰驱动下壳体断裂过程及破片损伤特性,通过测量破片对Q235钢板的侵彻开坑参数,量化了椭圆截面战斗部破片的侵彻毁伤能力。研究结果表明:椭圆截面战斗部破片速度由短轴至长轴方向呈对数趋势增长,相较于圆形截面战斗部存在明显的速度增益,短长轴比为0.40时,增益达到83%;靠近长轴处,由于壳体受到滑移爆轰为主导的驱动作用,壳体内部环向拉应力导致破片内表面出现拉伸裂纹,随着短长轴比增大,破片表面裂纹逐渐消失,而在战斗部短轴处,散心爆轰占据主导地位,壳体主要受到径向压应力作用,并未出现裂纹损伤;受端面稀疏波影响,战斗部轴向最大毁伤威力出现在距离非起爆端1/4处,而在战斗部径向方向,短长轴比为0.40时,短轴毁伤威力达到长轴的1.83倍,且该差异随着短长轴比增大逐渐减小。
  • 图  1  战斗部结构

    Figure  1.  Warhead structure

    图  2  试验布局

    Figure  2.  Layout of explosion experiments

    图  3  不同截面战斗部破片飞散撞击过程

    Figure  3.  Different cross-sectional warhead fragments scattering impact process

    图  4  不同短长轴比战斗部轴向破片飞散过程

    Figure  4.  Axial fragment scattering process of warhead with different minor to major axis ratios

    图  5  回收破片照片(μ=0.40)

    Figure  5.  Photos of recycle fragments (μ=0.40)

    图  6  破片表面区域划分示意图

    Figure  6.  Schematic diagram of fragment surface area division

    图  7  爆轰驱动后不同短长轴比战斗部不同位置回收破片的细观照片

    Figure  7.  Mesoscopic photos of fragments at different positions of warhead with different minor to major axis ratios

    图  8  爆轰驱动破片损伤过程示意图

    Figure  8.  Schematic diagram of detonation driven fragment damage process

    图  9  测速靶与椭圆截面战斗部破片位置对应关系处理过程

    Figure  9.  Corresponding relationship between velocity-measuring target and fragment position of elliptical section warhead

    图  10  不同短长轴比战斗部破片速度分布拟合结果

    Figure  10.  Fragment velocity and fitting results of warhead with different minor to major axis ratios

    图  11  破片速度增益及短长轴速度差值

    Figure  11.  Gain of fragment velocity and the difference of minor and major axis velocity

    图  12  破片开坑形状处理

    Figure  12.  Equivalent diagram of pit shape

    图  13  破片开坑坐标系建立过程

    Figure  13.  Establishment process of fragment pit coordinate system

    图  14  不同短长轴比战斗部破片开坑体积变化规律

    Figure  14.  Variation law of crater volume of warhead fragment with different minor to major axis ratios

    图  15  端面点起爆后爆轰波与稀疏波的作用过程

    Figure  15.  Interaction process of detonation wave and rarefaction wave under end-face point initiation

    图  16  不同短长轴比战斗部短长轴方向破片开坑体积的差异

    Figure  16.  Difference of crater volumes of fragments in the minor and major axis directions of warheads with different minor to major axis ratios

    表  1  战斗部参数

    Table  1.   Parameters of warhead

    编号a/mmb/mmμd/mmM/gC/gβ
    E135.5814.230.403.763431.3225.50.523
    E230.3416.690.553.956434.7228.10.525
    E326.8918.820.704.053435.5225.30.517
    E424.4020.740.854.096438.2224.90.513
    C122.5022.501.004.108437.4224.00.512
    下载: 导出CSV

    表  2  战斗部破片方位角与测速度对应关系的处理结果

    Table  2.   Relationship between azimuthal angle of the fragment impacting the velocity-measuring target

    弹体θ/(°)
    E1 3.01 8.6919.2530.89/38.3382.88
    E2 3.9927.7146.09/57.0983.01
    E34.3221.7040.0760.7483.97
    E45.2415.7526.3948.4371.8183.91
    C15.6316.8828.1350.6373.1384.38
    下载: 导出CSV

    表  3  测速靶测试结果与破片速度

    Table  3.   Velocity-measuring target test results and fragment velocity

    测速靶E1E2E3E4C1
    Δt/μsv/(m·s−1)Δt/μsv/(m·s−1)Δt/μsv/(m·s−1)Δt/μsv/(m·s−1)Δt/μsv/(m·s−1)
    3011 3292961 3512881 389
    3351 1943111 2862921 3702781 439
    3051 3112941 3612871 394
    2721 4712771 4442791 4342811 4232891 384
    2601 5382681 4932721 4712851 404
    2511 5942641 5152681 4932751 4652781 441
    下载: 导出CSV

    表  4  破片设计参数

    Table  4.   Fragment design parameters

    弹体径向刻槽数量壳体厚度/mm单个破片设计质量/g
    E1443.7630.51
    E2363.9560.61
    E3364.0530.62
    E4324.0960.70
    C1324.1080.71
    下载: 导出CSV
  • [1] LIU J W, LIU C, ZHANG X F, et al. Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets [J]. International Journal of Impact Engineering, 2023, 173: 104438. DOI: 10.1016/j.ijimpeng.2022.104438.
    [2] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [3] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [4] 谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应 [J]. 爆炸与冲击, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.

    TAN Y S, HUANG F L, PI A G. Structural optimization design and structural response of elliptical-section penetration projectiles [J]. Explosion and Shock Waves, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.
    [5] 邓希旻, 田泽, 武海军, 等. 上下非对称结构弹体侵彻金属薄板的特性及薄板破坏形式 [J/OL]. 兵工学报, (2022-11-02) [2023-04-15]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.

    DENG X M, TIAN Z, WU H J, et al. Penetration characteristics and plate failure modes of asymmetric shaped projectiles penetrating thin metal targets [J/OL]. Acta Armamentarii, (2022-11-02) [2023-04-15]. http://www.co-journal.com/CN/ 10.12382/bgxb.2022.0724. DOI: 10.12382/bgxb.2022.0724.
    [6] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [7] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.

    HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
    [8] HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
    [9] WANG X Y, WANG S S, MA F. Experimental study on the expansion of metal cylinders by detonation [J]. International Journal of Impact Engineering, 2018, 114: 147–152. DOI: 10.1016/j.ijimpeng.2017.12.017.
    [10] BOTVINA L R, LARIONOVA A V. Dynamic fragmentation in steel cylindrical shells [J]. Engineering Fracture Mechanics, 2022, 269: 108482. DOI: 10.1016/j.engfracmech.2022.108482.
    [11] XU H Y, LI W B, LI W B, et al. Fracture mechanism of a cylindrical shell cut by circumferential detonation collision [J]. Defence Technology, 2021, 17(5): 1650–1659. DOI: 10.1016/j.dt.2020.09.006.
    [12] GURNEY R W. The initial velocities of fragments from bombs, shells and grenades: report No. 405 [R]. Aberdeen Proving Ground, MD, USA: Ballistic Research Laboratories, 1943.
    [13] LIAO W JIANG J W, MEN J B, et al. Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge [J]. Defence Technology, 2021, 17(3): 1052–1061. DOI: 10.1016/j.dt.2020.06.024.
    [14] GAO Y G, ZHANG B, YAN X M, et al. Axial distribution of fragment velocities from cylindrical casing with air parts at two ends [J]. International Journal of Impact Engineering, 2020, 140: 103535. DOI: 10.1016/j.ijimpeng.2020.103535.
    [15] WANG M F, LU F Y, LI X Y, et al. A formula for calculating the velocities of fragments from velocity enhanced warhead [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 232–237. DOI: 10.1002/prep.201200025.
    [16] AN X Y, DONG Y X, LIU J Y, et al. Fragment velocity characteristics of warheads with a hollow core under asymmetrical initiation [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(8): 1049–1058. DOI: 10.1002/prep.201800382.
    [17] GUO Z W, HUANG G Y, ZHU W, et al. Fragment velocity distribution of D-shaped casing with multiple fragment layers [J]. International Journal of Impact Engineering, 2019, 131: 85–93. DOI: 10.1016/j.ijimpeng.2019.04.027.
    [18] GUO Z W, HUANG G Y, LIU H, et al. Fragment velocity distribution of the bottom part of d-shaped casings under eccentric initiation [J]. International Journal of Impact Engineering, 2020, 144: 103649. DOI: 10.1016/j.ijimpeng.2020.103649.
    [19] GUO Z W, HUANG G Y, LIU H, et al. Effects of shell thickness on the fragment velocity distribution of D-shaped casing filled with explosive [J]. Journal of Physics: Conference Series, 2021, 1721(1): 012018. DOI: 10.1088/1742-6596/1721/1/012018.
    [20] LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14. DOI: 10.1177/1687814016687966.
    [21] 李元, 赵倩, 熊诗辉, 等. 一种异面棱柱战斗部威力特性的数值模拟 [J]. 含能材料, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143.

    LI Y, ZHAO Q, XIONG S H, et al. Numerical modeling on lethality of a faceted prismatic warhead [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143.
    [22] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.

    LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.
    [23] 武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验 [J]. 火炸药学报, 2016, 39(3): 89–94. DOI: 10.14077/j.issn.1007-7812.2016.03.018.

    WU J B, GOU R J, ZHENG J J, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead [J]. Chinese Journal of Explosives and Propellants, 2016, 39(3): 89–94. DOI: 10.14077/j.issn.1007-7812.2016.03.018.
    [24] 杨祥, 武海军, 皮爱国, 等. 椭圆截面杀伤战斗部破片初速沿周向分布规律 [J]. 北京理工大学学报, 2018, 38(S2): 178–183. DOI: 10.15918/j.tbit1001-0645.2018.s2.040.

    YANG X, WU H J, PI A G, et al. Fragment velocity distribution of elliptical cross-section killing warhead along circumference [J]. Transactions of Beijing Institute of Technology, 2018, 38(S2): 178–183. DOI: 10.15918/j.tbit1001-0645.2018.s2.040.
    [25] 邓宇轩, 张先锋, 冯可华, 等. 椭圆截面战斗部爆炸驱动破片作用过程的数值模拟 [J]. 高压物理学报, 2022, 36(2): 025104. DOI: 10.11858/gywlxb.20210856.

    DENG Y X, ZHANG X F, FENG K H, et al. Numerical simulation of fragmentation process driven by explosion in elliptical cross-section warhead [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. DOI: 10.11858/gywlxb.20210856.
    [26] 姜斌, 沈波, 薛再清, 等. 椭圆形截面杀伤战斗部破片初速分布特性研究 [J]. 兵器装备工程学报, 2022, 43(3): 149–155. DOI: 10.11809/bqzbgcxb2022.03.023.

    JIANG B, SHEN B, XUE Z Q, et al. Study on distribution characteristics of initial velocity of elliptic killing warhead fragment [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 149–155. DOI: 10.11809/bqzbgcxb2022.03.023.
    [27] DENG X M, WU H J, YANG X, et al. Preformed fragment velocity distribution of elliptical cross-section projectile [J]. Latin American Journal of Solids and Structures, 2022, 19(1): e423. DOI: 10.1590/1679-78256835.
    [28] 戴湘晖, 王可慧, 周刚, 等. 椭圆截面侵彻弹体爆炸特性实验研究 [J]. 爆炸与冲击, 2023, 43(5): 053302. DOI: 10.11883/bzycj-2022-0079.

    DAI X H, WANG K H, ZHOU G, et al. Experimental study on explosion characteristics for elliptical cross-section penetrator [J]. Explosion and Shock Waves, 2023, 43(5): 053302. DOI: 10.11883/bzycj-2022-0079.
    [29] 邢恩峰. 中大口径炮弹增大轴向毁伤效能的研究 [D]. 南京: 南京理工大学, 2007: 46–49.

    XING E F. Research on strengthening axial damage effectiveness of large middle caliber ammunition [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2007: 46–49.
    [30] HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. DOI: 10.1016/j.ijimpeng.2014.08.007.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  87
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-15
  • 修回日期:  2023-06-01
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回