一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究

蒋文灿 程祥珍 梁斌 聂源 卢永刚

蒋文灿, 程祥珍, 梁斌, 聂源, 卢永刚. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究[J]. 爆炸与冲击, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389
引用本文: 蒋文灿, 程祥珍, 梁斌, 聂源, 卢永刚. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究[J]. 爆炸与冲击, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389
JIANG Wencan, CHENG Xiangzhen, LIANG Bin, NIE Yuan, LU Yonggang. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner[J]. Explosion And Shock Waves, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389
Citation: JIANG Wencan, CHENG Xiangzhen, LIANG Bin, NIE Yuan, LU Yonggang. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner[J]. Explosion And Shock Waves, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389

一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究

doi: 10.11883/bzycj-2021-0389
基金项目: 国家自然科学基金(11672278)
详细信息
    作者简介:

    蒋文灿(1990- ),男,博士研究生,jiangwc309@163.com

    通讯作者:

    卢永刚(1973- ),男,博士,研究员,lygcaep@263.net

  • 中图分类号: O383

Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner

  • 摘要: 为了研究组合药型罩聚能装药战斗部对含水复合结构的毁伤机理,基于LS-DYNA软件的任意拉格朗日-欧拉(arbitrary Lagrangian-Eulerian, ALE)流固耦合算法,对水下组合药型罩聚能装药战斗部侵彻体的形成以及穿靶过程开展研究,采用数值模拟等比例模型对水下组合药型罩聚能装药战斗部对靶板毁伤进行试验验证。研究结果表明,在偏心亚半球缺罩罩顶设计偏心亚半球形罩能够在侵彻体前端形成细长的杆式射流,可以增加整个侵彻体长度和头部侵彻体速度。在穿水和靶板过程中,利用头部杆式射流形成空腔帮助后续侵彻体低阻随进。对靶板毁伤过程的分析发现,与战斗部直接连接的第1层靶板将会受到侵彻体的高速冲击作用和爆炸波沿水介质传播过来的强冲击波联合作用,而随着水层厚度的增加,沿水中传播的爆炸冲击波强度会被迅速衰减,爆炸冲击波对后续靶板的作用变得不明显,主要为侵彻体的冲击作用。最后利用设计的组合药型罩结构开展了试验验证,对比分析了每层靶板的穿孔尺寸,试验结果与数值计算结果符合较好,最大误差小于15%。
  • 图  1  组合药型罩和偏心亚半球缺罩结构设计(单位:mm)

    Figure  1.  Structural design of combined liner and eccentric sub-hemispherical liner (unit: mm)

    图  2  组合药型罩聚能装药战斗部对含水复合结构作用的数值模拟计算模型(单位: mm)

    Figure  2.  Numerical simulation model of the shaped charge warhead of combined liner on water containing composite structure (unit: mm)

    图  3  80 μs前组合药型罩和偏心亚半球缺罩的侵彻体形成过程

    Figure  3.  Formation processes of penetrators for combined liner and eccentric sub-hemispherical liner before the time of 80 μs

    图  4  80 μs时组合药型罩和偏心亚半球缺罩形成的侵彻体在对称轴线处速度随位置分布

    Figure  4.  The velocity distribution with position y of the penetrator formed by the combined liner and eccentric sub-hemispherical liner at the position of axis of symmetry (x=0) at the time of 80 μs

    图  5  80μs时组合药型罩和偏心亚半球缺罩形成的侵彻体构型和速度分布

    Figure  5.  Configurations and velocity distributions of the penetrator formed by the combined liner and eccentric sub-hemispherical at the time of 80 μs

    图  6  组合药型罩和偏心亚半球缺罩穿靶过程(其中灰色部分为水介质,黄色部分为主装药,白色为空腔,深绿色为侵彻体)

    Figure  6.  Penetration process of combined liner and eccentric sub-hemispherical liner (the gray part is water medium, the yellow part is the main charge, white is cavity and dark green is penetrator)

    图  7  在不同水层水介质的径向扩展速度

    Figure  7.  Variation curves of radial expansion velocity of water medium different water layers

    图  8  侵彻体头部位置随时间变化曲线以及侵彻体动能随位置变化曲线

    Figure  8.  Position of the penetrator head varying with time and kinetic energy of penetrator varying with time

    图  9  侵彻体头部速度随穿水深度变化

    Figure  9.  Variation of the head velocity of the penetrator with penetration depth

    图  10  组合药型罩侵彻体穿透所有靶板后侵彻体构型及速度分布

    Figure  10.  The configuration and velocity distribution of the penetrator after the combined shaped charge liner penetrator penetrates all targets

    图  11  组合药型罩侵彻体侵彻第1层靶板时靶板表面的空气炸高空腔Q1点和水介质Q2点压力随时间变化

    Figure  11.  The pressure at point Q1 and point Q2changes with time when the combined liner penetrates the first target in aqueous medium

    图  12  更改外部水介质环境为空气后组合药型罩侵彻体在侵彻第一层靶板时P1点和P2点压力随时间变化

    Figure  12.  The pressure at point P1 and point P2 changes with time when the combined liner penetrates the first layer of target in air

    图  13  在偏离轴线40 mm处各层靶板上表面的冲击波压力

    Figure  13.  Shock wave pressure on the surfaces of target 40 mm away from the axis

    图  14  组合药型罩聚能装药战斗部试验布置图

    Figure  14.  Experimental layout of shaped charge warhead with combined charge liner

    图  15  组合药型罩聚能装药战斗部试验结果

    Figure  15.  The results of shaped charge warhead with combined charge liner

    图  16  靶板穿孔尺寸测量结果

    Figure  16.  Measurement results on the target

    表  1  材料本构模型及状态方程

    Table  1.   Constitutive model and state equation of the materials

    材料本构模型状态方程
    炸药HIGH_EXPLOSIVE_BURNJWL
    药型罩STEINBERGGRÜNEISEN
    壳体JOHNSON_COOKGRÜNEISEN
    NULLLINEAR_POLYNOMIAL
    空气NULLLINEAR_POLYNOMIAL
    靶板JOHNSON_COOKGRÜNEISEN
    下载: 导出CSV

    表  2  80 μs时组合药型罩和偏心亚半球缺罩的外形尺寸统计

    Table  2.   Statistics of overall dimensions of combined liner and eccentric sub-hemispherical liner at 80 μs

    D1/mmD2/mmL1/mmS1/mmS2/mm
    44 (0.36d2)12 (0.10d2)169 (1.39d2)22 (0.18d2)104 (0.85d2)
    S3/mmD3/mmD4/mmD5/mmL2/mm
    431846 (0.38d2)12 (0.10d2)103 (0.84d2)
    下载: 导出CSV

    表  3  药型罩聚能装药穿孔尺寸数值模拟计算与试验结果对比

    Table  3.   Comparison between numerical calculation and experimental results of perforation size

    靶板偏心亚半球缺罩
    破孔尺寸/mm
    组合药型罩破孔尺寸/mm组合药型罩计算
    结果偏差/%
    数值模拟结果实验结果
    第1层49.646.650−6.8
    第2层45.442.43714.6
    第3层59.241.8404.5
    第4层64.043.2415.4
    后效靶未穿透46.670×494.9
    注:偏心亚半球缺罩破孔尺寸为数值模拟结果;组合药型罩计算结果偏差为数值模拟结果相对于试验结果的偏差。
    下载: 导出CSV
  • [1] 谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.

    TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
    [2] 梁争峰, 胡焕性. 爆炸成形弹丸技术现状与发展 [J]. 火炸药学报, 2004, 27(4): 21–25. DOI: 10.3969/j.issn.1007-7812.2004.04.006.

    LIANG Z F, HU H X. The current situation and future development direction of explosively formed projectile technology [J]. Chinese Journal of Explosives & Propellants, 2004, 27(4): 21–25. DOI: 10.3969/j.issn.1007-7812.2004.04.006.
    [3] 吴晗玲, 段卓平, 汪永庆. 杆式射流形成的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.

    WU H L, DUAN Z P, WANG Y Q. Simulation investigation of rod-like jets [J]. Explosion and Shock Waves, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.
    [4] 徐斌, 王成, 徐文龙. 高速杆式射流形成的数值模拟与实验研究 [J]. 北京理工大学学报, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.

    XU B, WANG C, XU W L. Numerical simulation and experiment investigation on hypervelocity jetting projectile charge formation [J]. Transactions of Beijing Institute of Technology, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.
    [5] 王利侠, 谷鸿平, 丁刚, 等. 聚能射流对带壳浇注PBX装药的撞击响应 [J]. 含能材料, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.

    WANG L X, GU H P, DING G, et al. Reaction characteristics for shelled cast-cured PBX explosive impacted by shaped charge jet [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.
    [6] 王海福, 江增荣, 李向荣. 药型罩参数对聚能装药水下作用效应的影响 [J]. 北京理工大学学报, 2006, 26(5): 405–409. DOI: 10.3969/j.issn.1001-0645.2006.05.007.

    WANG H F, JIANG Z R, LI X R. Influences of liner parameters on the effects of shaped charge operating underwater [J]. Transactions of Beijing Institute of Technology, 2006, 26(5): 405–409. DOI: 10.3969/j.issn.1001-0645.2006.05.007.
    [7] 周方毅, 詹发民, 姜涛, 等. 一种组合药型罩聚能战斗部 [J]. 鱼雷技术, 2012, 20(5): 380–383; 400. DOI: 10.3969/j.issn.1673-1948.2012.05.014.

    ZHOU F Y, ZHAN F M, JIANG T, et al. An idea about shaped charge warhead with combined charge liner for torpedo [J]. Torpedo Technology, 2012, 20(5): 380–383; 400. DOI: 10.3969/j.issn.1673-1948.2012.05.014.
    [8] 周方毅, 黄雪峰, 詹发民, 等. 一种双球缺组合药型罩聚能鱼雷战斗部研究 [J]. 水下无人系统学报, 2017, 25(4): 278–281; 287. DOI: 10.11993/j.issn.2096-3920.2017.03.011.

    ZHOU F Y, ZHAN F M, JIANG T, et al. A shaped charge warhead with two spherical combined liners for torpedo [J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 278–281; 287. DOI: 10.11993/j.issn.2096-3920.2017.03.011.
    [9] 张春辉, 张斐, 王志军, 等. 复合材质杆式射流侵彻水下目标的数值模拟 [J]. 爆破器材, 2019, 48(1): 8–14. DOI: 10.3969/j.issn.1001-8352.2019.01.002.

    ZHANG C H, ZHANG F, WANG Z J, et al. Numerical simulation of composite-material rod-like jet penetrating underwater targets [J]. Explosive Materials, 2019, 48(1): 8–14. DOI: 10.3969/j.issn.1001-8352.2019.01.002.
    [10] 李兵, 刘念念, 陈高杰, 等. 水中聚能战斗部毁伤双层圆柱壳的数值模拟与试验研究 [J]. 兵工学报, 2018, 39(1): 38–45. DOI: 10.3969/j.issn.1000-1093.2018.01.004.

    LI B, LIU N N, CHEN G J, et al. Numerical simulation and experimental research on damage of shaped charge warhead to double-layer columniform shell [J]. Acta Armamentarii, 2018, 39(1): 38–45. DOI: 10.3969/j.issn.1000-1093.2018.01.004.
    [11] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. DOI: 10.11809/bqzbgcxb2021.12.016.

    WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-Submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. DOI: 10.11809/bqzbgcxb2021.12.016.
    [12] 王长利, 马坤, 周刚, 等. 防雷舱结构在聚能装药水下爆炸作用下的毁伤研究 [J]. 爆炸与冲击, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.

    WANG C L, MA K, ZHOU G, et al. Damage effect of cabin near ship board under shaped charge exploding underwater [J]. Explosion and Shock Waves, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.
    [13] 王长利, 周刚, 马坤, 等. 典型含水复合结构在聚能装药水下爆炸作用下的毁伤 [J]. 船舶力学, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.

    WANG C L, ZHOU G, MA K, et al. Damage anlysis of typical water partitioned structure under shaped charge underwater explosion [J]. Journal of Ship Mechanics, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.
    [14] 杨莉, 张庆明, 汪玉, 等. 反舰聚能战斗部装药结构研究 [J]. 兵工学报, 2009(S2): 154–158.

    YANG L, ZHANG Q M, WANG Y, et al. Research on shaped charge warhead of anti-ship missile [J]. Acta Armamentarii, 2009(S2): 154–158.
    [15] 傅磊, 王伟力, 李永胜, 等. 组合药型罩水介质中成型的数值仿真 [J]. 鱼雷技术, 2015, 23(5): 367–373. DOI: 10.11993/j.issn.1673-1948.2015.05.009.

    FU L, WANG W L, LI Y S, et al. Numerical simulation of combined liner formation in water [J]. Torpedo Technology, 2015, 23(5): 367–373. DOI: 10.11993/j.issn.1673-1948.2015.05.009.
    [16] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 295–296.
    [17] 时党勇. 倾斜尾翼爆炸成型弹丸的数值模拟和外弹道计算 [C]// 第十届全国爆炸与安全技术会议论文集. 昆明: 2011, 286–292.
    [18] LEE S G, BAEK Y H, LEE I H, et al. Numerical simulation of 2D sloshing by using ALE2D technique of LS-DYNA and CCUP methods [C]// The Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference (ISOPE-2010 Beijing). International Society of Offshore and Polar Engineers (ISOPE), 2010: 192–199.
    [19] MULLIN M J, O’TOOLE B J. Simulation of energy absorbing materials in blast loaded structures [C]// 8th International LS-DYNA Users Conference. 2004: 2–7.
    [20] 吴海军, 王可慧, 柯明, 等. 多点同步起爆条件下环形射流成型及侵彻过程的数值模拟 [J]. 现代应用物理, 2018, 9(2): 75–82. DOI: 10.12061/j.issn.2095-6223.2018.021002.

    WU H J, WANG K H, KE M, et al. Numerical simulation on formation and penetration processes of the annular jet with multi-points synchronous explosive circuit [J]. Modern Applied Physics, 2018, 9(2): 75–82. DOI: 10.12061/j.issn.2095-6223.2018.021002.
    [21] ROBBINS J R, DING J L, GUPTA Y M. Load spreading and penetration resistance of layered structures-a numerical study [J]. International Journal of Impact Engineering, 2004, 30(6): 593–615. DOI: 10.1016/j.ijimpeng.2003.08.001.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  201
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回