十字形内置破片定向战斗部破片的飞散特性

李鑫 王伟力 梁争峰 畅波 苗润源

李鑫, 王伟力, 梁争峰, 畅波, 苗润源. 十字形内置破片定向战斗部破片的飞散特性[J]. 爆炸与冲击, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464
引用本文: 李鑫, 王伟力, 梁争峰, 畅波, 苗润源. 十字形内置破片定向战斗部破片的飞散特性[J]. 爆炸与冲击, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464
LI Xin, WANG Weili, LIANG Zhengfeng, CHANG Bo, MIAO Runyuan. Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead[J]. Explosion And Shock Waves, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464
Citation: LI Xin, WANG Weili, LIANG Zhengfeng, CHANG Bo, MIAO Runyuan. Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead[J]. Explosion And Shock Waves, 2023, 43(8): 083301. doi: 10.11883/bzycj-2022-0464

十字形内置破片定向战斗部破片的飞散特性

doi: 10.11883/bzycj-2022-0464
详细信息
    作者简介:

    李 鑫(1987- ),男,博士研究生,副研究员,syhshanxi2008@126.com

    通讯作者:

    王伟力(1962- ),男,教授,博士生导师,w.l.wang@tom.com

  • 中图分类号: O389

Fragment dispersion characteristics of the cross-shape built-in fragmentation directional warhead

  • 摘要: 针对低附带弹药毁伤需求,设计了一种十字形内置破片定向战斗部,根据目标方位可选择不同起爆模式,进而控制破片的径向飞散特性,在目标区域内形成杀伤破片实现定向毁伤,在非目标区域内实现低附带毁伤。采用数值模拟研究了相邻2点起爆、相邻3点起爆两种模式下定向战斗部起爆时破片的驱动过程,给出了各个位置处破片的飞散速度、径向飞散角度等特征参数;制备了2发单元样弹并开展了地面静爆实验,通过高速摄影及靶板上破片的穿孔分布特征实测出破片的速度及径向飞散角,与数值模拟结果对比,验证了模拟的准确性。在此基础上,通过引入能量分配角建立了破片速度的修正公式,并根据模拟结果对公式参数进行了拟合分析。结果表明:相邻2点起爆、相邻3点起爆模式下,战斗部定向杀伤区破片径向飞散角分别控制在145°、65°以内,且该区域内的破片占破片总数的比例分别达到了50.4%、43%;同时,破片速度呈现梯次分布,介于535~770 m/s之间,对1.5 mm厚的Q235A钢板的穿甲率分别达到了94.4%、84.6%,可实现对轻型车辆类目标的毁伤,其余区域则为低附带安全区;基于能量分配模型求得的破片速度理论计算值与模拟值基本吻合。研究结果可为低附带杀伤战斗部研制提供新的设计思路。
  • 图  1  十字形内置破片定向战斗部结构示意图

    Figure  1.  Schematic diagram of the cross-shape built-in fragmentation directional warhead

    图  2  激光探测装置的8个探测窗口与4个起爆点的相对位置

    Figure  2.  The relative positions of the eight detection windows of the laser detection device and the four detonation points

    图  3  两种起爆模式下破片飞散示意图

    Figure  3.  Schematic diagrams of fragments dispersion under two different initiation modes

    图  4  数值计算模型

    Figure  4.  Numerical calculation model

    图  5  相邻2点起爆下破片径向飞散模拟结果

    Figure  5.  Simulation results of fragment radial dispersion under adjacent two-point initiation

    图  6  相邻3点起爆下破片径向飞散模拟结果

    Figure  6.  Simulation results of fragment radial dispersion under adjacent three-point initiation

    图  7  典型位置处破片速度的模拟结果

    Figure  7.  Simulation results of fragment velocity at typical locations

    图  8  实验样弹

    Figure  8.  Experimental samples

    图  9  实验布局

    Figure  9.  Experimental layout

    图  10  相邻2点起爆下破片撞击钢板的高速摄影典型照片

    Figure  10.  Typical pictures of fragments penetrating steel plate by high-speed photography under adjacent two-point initiation

    图  11  相邻3点起爆下破片撞击钢板的高速摄影典型照片

    Figure  11.  Typical pictures of fragments penetrating steel plate by high-speed photography under adjacent three-point initiation

    图  12  破片对靶板毁伤形貌

    Figure  12.  Damage appearance of steel plate by fragment

    图  13  两种起爆方式下破片径向分布的统计结果

    Figure  13.  Statistical results of fragment radial distribution under two different initiation modes

    图  14  破片速度的计算模型

    Figure  14.  Calculation model of fragment velocity

    图  15  破片速度理论计算值与数值模拟值比较

    Figure  15.  Comparison between the theoretical calculation results and numerical simulation data

    表  1  HMX基PBX炸药的材料参数

    Table  1.   Material parameters of HMX-based PBX explosives

    材料密度/(kg·m−3爆压/GPa爆速/(m·s−1A/GPaB/GPaR1R2ω
    HMX基PBX炸药181831.868336748.613.384.51.20.38
    下载: 导出CSV

    表  2  2A12铝合金的材料参数

    Table  2.   Material parameters of 2A12 aluminum alloy

    材料Johnson-Cook本构模型 Grüneisen状态方程
    密度/
    (kg·m−3
    杨氏模量/
    GPa
    泊松比屈服应力/
    MPa
    硬化系数/
    MPa
    硬化
    指数
    应变率
    系数
    温度
    系数
    拟合系数S波速/
    (m·s−1
    γ
    2A12铝合金276068.960.332654260.340.151.01.33853282.0
    下载: 导出CSV

    表  3  93W合金的材料参数

    Table  3.   Material parameters of 93 W tungsten alloy

    材料密度/(kg·m−3)杨氏模量/GPa剪切模量/GPa泊松比屈服应力/GPa硬化系数
    93W合金176003577.90.30321
    下载: 导出CSV

    表  4  聚氨酯的材料参数

    Table  4.   Material parameters of polyurethane

    材料密度/(kg·m−3)剪切模量/GPa屈服应力/GPa
    聚氨酯11002.200.05
    下载: 导出CSV

    表  5  破片速度数值模拟结果与实验值对比

    Table  5.   Comparison between numerical simulation results and test data on fragment velocity

    起爆模式 最大速度 最小速度
    模拟值/(m·s−1实验值/(m·s−1偏差/%模拟值/(m·s−1实验值/(m·s−1偏差/%
    相邻2点起爆730.57502.67560535−4.46
    相邻3点起爆700.27507.115505774.91
    下载: 导出CSV
  • [1] KARAS R S. Air force to buy low-collateral-damage variant of small diameter bomb [J]. Inside the Air Force, 2018, 29(26): 13.
    [2] 张明明, 魏屹, 万鸣, 等. 近距空中支援作战对武器弹药的需求研究 [J]. 科学技术与工程, 2023, 23(2): 440–447. DOI: 10.12404/j.issn.1671-1815.2023.23.02.00440.

    ZHANG M M, WEI Y, WAN M, et al. Requirement of weapon and ammunition in close air support [J]. Science Technology and Engineering, 2023, 23(2): 440–447. DOI: 10.12404/j.issn.1671-1815.2023.23.02.00440.
    [3] 刘素梅, 王中, 杨彩宁, 等. 美国研制低附带毁伤DIME弹药 [J]. 飞航导弹, 2009(5): 41–43. DOI: 10.16338/j.issn.1009-1319.2009.05.019.

    LIU S M, WANG Z, YANG C N, et al. The United States developed low collateral damage DIME ammunition [J]. Aerodynamic Missile Journal, 2009(5): 41–43. DOI: 10.16338/j.issn.1009-1319.2009.05.019.
    [4] 姚文进, 王晓鸣, 李文彬, 等. 低附带毁伤弹药爆炸威力的理论分析与试验研究 [J]. 火炸药学报, 2009, 32(2): 21–24. DOI: 10.3969/j.issn.1007-7812.2009.02.006.

    YAO W J, WANG X M, LI W B, et al. Theory analysis and experiment research on blast effect of low collateral damage ammunition [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 21–24. DOI: 10.3969/j.issn.1007-7812.2009.02.006.
    [5] 李俊承, 樊壮卿, 梁斌, 等. 一种低附带弹药金属颗粒定向加载技术 [J]. 爆炸与冲击, 2018, 38(4): 869–875. DOI: 10.11883/bzycj-2016-0376.

    LI J C, FAN Z Q, LIANG B, et al. Experimental study on directed loading metal particles of low collateral damage ammunition [J]. Explosion and Shock Waves, 2018, 38(4): 869–875. DOI: 10.11883/bzycj-2016-0376.
    [6] 霍奕宇, 王坚茹, 陈智刚, 等. 碳纤维壳体壁厚对陶瓷球初速及性能的影响? [J]. 爆破器材, 2016, 45(1): 30–33. DOI: 10.3969/j.issn.1001-8352.2016.01.007.

    HUO Y Y, WANG J R, CHEN Z G, et al. Influence of thickness of carbon fiber shell on initial velocity and capability of ceramic ball [J]. Explosive Materials, 2016, 45(1): 30–33. DOI: 10.3969/j.issn.1001-8352.2016.01.007.
    [7] FONG R, NG W, ROTTINGER P, et al. Enhanced focused fragmentation warhead study [C]//26th Intentional Symposium on Ballistics. Miami, USA: Intentional Ballistics Society, 2011.
    [8] LLOYD R M. The use of novel penetrators on aimable kinetic energy rod warheads against ballistic missile payloads [C]//20th Intentional Symposium on Ballistics. Orlando, USA: Intentional Ballistics Society, 2002.
    [9] LLOYD R M. Physics of direct hit and near miss warhead technology [M]. Virginia: American Institute of Aeronautics and Astronautics, Inc. , 2001: 4−7.
    [10] 邓海, 全嘉林, 梁争峰. 偏心起爆对战斗部装药能量分配增益的影响 [J]. 爆炸与冲击, 2022, 42(5): 052201. DOI: 10.11883/bzycj-2021-0280.

    DENG H, QUAN J L, LIANG Z F. Influence of eccentric initiation on energy distribution gain of a warhead charge [J]. Explosion and Shock Waves, 2022, 42(5): 052201. DOI: 10.11883/bzycj-2021-0280.
    [11] 苗春壮, 梁增友, 邓德志, 等. 曲率半径对聚焦战斗部影响的数值仿真 [J]. 兵工自动化, 2018, 37(12): 93–96. DOI: 10.7690/bgzdh.2018.12.024.

    MIAO C Z, LIANG Z Y, DENG D Z, et al. Numerical simulation influence of curvature radius on focusing warhead [J]. Ordnance Industry Automation, 2018, 37(12): 93–96. DOI: 10.7690/bgzdh.2018.12.024.
    [12] 刘伟, 梁争峰, 阮喜军, 等. 波形控制器对杀伤战斗部破片飞散特性影响研究 [J]. 爆炸与冲击, 2023, 43(2): 023203. DOI: 10.11883/bzycj-2022-0202.

    LIU W, LIANG Z F, RUAN X J, et al. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead [J]. Explosion and Shock Waves, 2023, 43(2): 023203. DOI: 10.11883/bzycj-2022-0202.
    [13] 蒋建伟, 门建兵, 卢永刚, 等. 动能杆定向抛撒规律的数值模拟 [J]. 爆炸与冲击, 2004, 24(1): 85–89.

    JIANG J W, MEN J B, LU Y G, et al. Numerical simulation of KE-rod directional disperse [J]. Explosion and Shock Waves, 2004, 24(1): 85–89.
    [14] 李鑫, 王伟力, 梁争峰, 等. 炸药爆轰对金属壳体加速能力研究进展 [J]. 弹箭与制导学报, 2022, 42(2): 7–15. DOI: 10.15892/j.cnki.djzdxb.2022.02.002.

    LI X, WANG W L, LIANG Z F, et al. Research progress on acceleration ability of explosive detonation to metal shell [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(2): 7–15. DOI: 10.15892/j.cnki.djzdxb.2022.02.002.
    [15] LIAO W, JIANG J W, MEN J B, et al. Effect of the end cap on the fragment velocity distribution of a cylindrical cased charge [J]. Defence Technology, 2021, 17(3): 1052–1061. DOI: 10.1016/j.dt.2020.06.024.
    [16] NING J G, DUAN Y, XU X Z, et al. Velocity characteristics of fragments from prismatic casing under internal explosive loading [J]. International Journal of Impact Engineering, 2017, 109: 29–38. DOI: 10.1016/j.ijimpeng.2017.05.018.
    [17] LI Y, CHENG L, WEN Y Q. Fragment velocity formula for reverse detonation driving with opposite initiation [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12): 1931–1936. DOI: 10.1002/prep.202000162.
    [18] LI Y, LI X G, XIONG S H, et al. New formula for fragment velocity in the aiming direction of an asymmetrically initiated warhead [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(5): 496–505. DOI: 10.1002/prep.201800003.
    [19] 隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 80–82.

    SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000: 80–82.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  72
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2023-05-02
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回