泡沫铜对密闭管道内合成气爆炸特性影响的实验研究

郑凯 任佳乐 宋晨 贾千航 邢志祥

郑凯, 任佳乐, 宋晨, 贾千航, 邢志祥. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究[J]. 爆炸与冲击, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036
引用本文: 郑凯, 任佳乐, 宋晨, 贾千航, 邢志祥. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究[J]. 爆炸与冲击, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036
ZHENG Kai, REN Jiale, SONG Chen, JIA Qianhang, XING Zhixiang. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe[J]. Explosion And Shock Waves, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036
Citation: ZHENG Kai, REN Jiale, SONG Chen, JIA Qianhang, XING Zhixiang. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe[J]. Explosion And Shock Waves, 2024, 44(1): 012102. doi: 10.11883/bzycj-2023-0036

泡沫铜对密闭管道内合成气爆炸特性影响的实验研究

doi: 10.11883/bzycj-2023-0036
基金项目: 国家自然科学基金(51804054)
详细信息
    作者简介:

    郑 凯(1989- ),男,博士,副研究员,zk@cczu.edu.cn

    通讯作者:

    邢志祥(1967- ),男,博士,教授,xingzhixiang@cczu.edu.cn

  • 中图分类号: O382; X932

Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe

  • 摘要: 为研究泡沫铜孔隙密度和H2体积分数对合成气爆炸特性的影响,在封闭的管道中安装了孔隙密度为15、25和40 ppi的泡沫铜,实验分析了当量比为1的合成气-空气在不同H2体积分数时的火焰结构、尖端速度和超压等参数变化规律。实验结果表明:火焰在泡沫铜上游的行为是受“郁金香”火焰形成过程的影响,泡沫铜对其没有影响。但是孔隙密度和H2体积分数的改变不仅会影响“郁金香”火焰的形成时间,还会影响变形“郁金香”火焰的形成。泡沫铜将火焰分割促使其从层流向湍流转化,对爆炸火焰传播起到加速作用。泡沫铜会引起管道内超压和火焰尖端速度的极大提升,且孔隙密度越小,H2体积分数越大,火焰穿过泡沫铜后的最大火焰尖端速度越大,压力上升幅度越大,超压峰值越高。
  • 图  1  实验系统示意

    Figure  1.  Schematic of experimental system

    图  2  不同孔隙密度的泡沫铜

    Figure  2.  Copper foams with different pore densities

    图  3  不添加泡沫铜时的火焰形态

    Figure  3.  Flame without copper foam

    图  4  $\varphi $=10%下受不同孔隙密度泡沫铜抑制的火焰形态

    Figure  4.  Flame at $\varphi $=10% and different pore densities

    图  5  $\varphi $=50%下不同孔隙密度时的火焰形态

    Figure  5.  Flame at $\varphi $=50% and different pore densities

    图  6  $\varphi $=90%下不同孔隙密度时的火焰形态

    Figure  6.  Flame at $\varphi $=90% and different pore densities

    图  7  火焰尖端速度随火焰前锋位置的变化

    Figure  7.  Measured flame tip speed as a function of flame tip location

    图  8  不同孔隙密度下的火焰速度参数

    Figure  8.  Measured flame speed parameters at different ppi

    图  9  超压(p)随时间变化

    Figure  9.  Measured overpressure (p) changing with time

    图  10  不同条件的时超压(p)与火焰前锋速度(v)的关系

    Figure  10.  Relationship between overpressure (p) and flame tip speed (v) under different conditions

    图  11  最大超压(pmax)与H2体积分数($\varphi $)的关系

    Figure  11.  Measured maximum overpressure (pmax) changing with volume fracture of H2 ($\varphi $)

  • [1] 刘义涛, 朱明辉, 杨子旭, 等. 煤制化学品: 合成气直接制低碳烯烃催化剂研究进展 [J]. 化工进展, 2021, 40(2): 594–604. DOI: 10.16085/j.issn.1000-6613.22020-1402.

    LIU Y T, ZHU M H, YANG Z X, et al. Advances of catalysts for direct synthesis of lower olefins from syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594–604. DOI: 10.16085/j.issn.1000-6613.22020-1402.
    [2] 余明高, 韦贝贝, 郑凯. N2与CO2对合成气爆炸特性影响的实验研究 [J]. 爆炸与冲击, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.

    YU M G, WEI B B, ZHENG K. Effect of inert gas addition on syngas explosion [J]. Explosion and Shock Waves, 2019, 39(6): 065401. DOI: 10.11883/bzycj-2018-0131.
    [3] 李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测 [J]. 爆炸与冲击, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2020-0140.

    LI Y C, BI M S, GAO W. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation [J]. Explosion and Shock Waves, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2020-0140.
    [4] 倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.

    NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. DOI: 10.11883/bzycj-2019-0237.
    [5] 张凯, 杜赛枫, 陈昊, 等. 泄爆和氮气惰化耦合作用对氢-空气爆炸影响的实验研究 [J]. 爆炸与冲击, 2022, 42(12): 125402. DOI: 10.11883/bzycj-2021-0459.

    ZHANG K, DU S F, CHEN H, et al. Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions [J]. Explosion and Shock Waves, 2022, 42(12): 125402. DOI: 10.11883/bzycj-2021-0459.
    [6] OLM C, ZSÉLY I G, VARGA T, et al. Comparison of the performance of several recent syngas combustion mechanisms [J]. Combustion and Flame, 2015, 162(5): 1793–1812. DOI: 10.1016/j.combustflame.2014.12.001.
    [7] ZHANG Y, SHEN W F, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
    [8] BOUVET N, CHAUVEAU C, GÖKALP I, et al. Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures [J]. Proceedings of the Combustion Institute, 2011, 33(1): 913–920. DOI: 10.1016/j.proci.2010.05.088.
    [9] ZHANG Y, SHEN W F, FAN M, et al. Laminar flame speed studies of lean premixed H2/CO/air flames [J]. Combustion and Flame, 2014, 161(10): 2492–2495. DOI: 10.1016/j.combustflame.2014.03.016.
    [10] CAO W G, LI W J, ZHANG Y, et al. Experimental study on the explosion behaviors of premixed syngas-air mixtures in ducts [J]. International Journal of Hydrogen Energy, 2021, 46(44): 23053–23066. DOI: 10.1016/j.ijhydene.2021.04.120.
    [11] 余明高, 栾鹏鹏, 郑凯, 等. 管道内预混合成气爆炸特性 [J]. 化工学报, 2018, 69(10): 4486–4494. DOI: 10.11949/j.issn.0438-1157.20180610.

    YU M G, LUAN P P, ZHENG K, et al. Characteristics of premixed syngas/air explosion in horizontal duct [J]. CIESC Journal, 2018, 69(10): 4486–4494. DOI: 10.11949/j.issn.0438-1157.20180610.
    [12] YU M G, LUAN P P, ZHENG K, et al. Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction [J]. International Journal of Hydrogen Energy, 2019, 44(29): 15553–15564. DOI: 10.1016/j.ijhydene.2019.04.046.
    [13] YANG X F, YU M G, ZHENG K, et al. On the propagation dynamics of lean H2/CO/air premixed flame [J]. International Journal of Hydrogen Energy, 2020, 45(11): 7210–7222. DOI: 10.1016/j.ijhydene.2019.12.116.
    [14] YANG X F, YU M G, ZHENG K, et al. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct [J]. Fuel, 2020, 267: 117200. DOI: 10.1016/j.fuel.2020.117200.
    [15] HAN S X, YU M G, YANG X F, et al. Effects of obstacle position and hydrogen volume fraction on premixed syngas-air flame acceleration [J]. International Journal of Hydrogen Energy, 2020, 45(53): 29518–29532. DOI: 10.1016/j.ijhydene.2020.07.189.
    [16] DIAO S T, WEN X P, GUO Z D, et al. Experimental study of explosion dynamics of syngas flames in the narrow channel [J]. International Journal of Hydrogen Energy, 2022, 47(40): 17808–17820. DOI: 10.1016/j.ijhydene.2022.03.258.
    [17] YAO Z F, DENG H X, ZHAO W L, et al. Experimental study on explosion characteristics of premixed syngas/air mixture with different ignition positions and opening ratios [J]. Fuel, 2020, 279: 118426. DOI: 10.1016/j.fuel.2020.118426.
    [18] YU M G, YANG X F, ZHENG K, et al. Experimental study of premixed syngas/air flame deflagration in a closed duct [J]. International Journal of Hydrogen Energy, 2018, 43(29): 13676–13686. DOI: 10.1016/j.ijhydene.2018.05.103.
    [19] TRAN M V, SCRIBANO G, CHONG C T, et al. Experimental and numerical investigation of explosive behavior of syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2018, 43(16): 8152–8160. DOI: 10.1016/j.ijhydene.2018.03.077.
    [20] 段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.

    DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.
    [21] DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
    [22] SHAO H, WANG C, YU H K. Effect of copper foam on explosion suppression at different positions in the pipe [J]. Powder Technology, 2020, 360: 695–703. DOI: 10.1016/j.powtec.2019.09.078.
    [23] LONG F Y, DUAN Y L, YU S W, et al. Effect of porous materials on explosion characteristics of low ratio hydrogen/methane mixture in barrier tube [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104875. DOI: 10.1016/j.jlp.2022.104875.
    [24] WANG J, LIU G L, ZHENG L G, et al. Effect of opening blockage ratio on the characteristics of methane/air explosion suppressed by porous media [J]. Process Safety and Environmental Protection, 2022, 164: 129–141. DOI: 10.1016/j.psep.2022.06.008.
    [25] WU Q F, YU M G, ZHENG K. Experimental investigation on the effect of obstacle position on the explosion behaviors of the non-uniform methane/air mixture [J]. Fuel, 2022, 320: 123989. DOI: 10.1016/j.fuel.2022.123989.
    [26] XIAO H H, DUAN Q L, SUN J H. Premixed flame propagation in hydrogen explosions [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1988–2001. DOI: 10.1016/j.rser.2017.06.008.
    [27] CLANET C, SEARBY G. On the “tulip flame” phenomenon [J]. Combustion and Flame, 1996, 105(1/2): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
    [28] ZHOU L, GAO D Z, ZHAO J F, et al. Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates [J]. Combustion and Flame, 2018, 191: 453–467. DOI: 10.1016/j.combustflame.2018.01.023.
    [29] CAO X Y, ZHOU Y Q, WANG Z R, et al. Experimental research on hydrogen/air explosion inhibition by the ultrafine water mist [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23898–23908. DOI: 10.1016/j.ijhydene.2022.05.165.
    [30] DUAN Y L, LONG F Y, HUANG J, et al. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27237–27249. DOI: 10.1016/j.ijhydene.2022.06.065.
    [31] YANG X F, YU M G, ZHENG K, et al. An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct [J]. Fuel, 2019, 237: 619–629. DOI: 10.1016/j.fuel.2018.10.055.
    [32] LI H W, GUO J, TANG Z S, et al. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct [J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598–20605. DOI: 10.1016/j.ijhydene.2019.06.029.
  • 加载中
图(11)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  48
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-09
  • 修回日期:  2023-04-07
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回