含氦泡辐照老化材料层裂损伤计算方法分析

张凤国 刘军 王言金 王裴 郑晖

张凤国, 刘军, 王言金, 王裴, 郑晖. 含氦泡辐照老化材料层裂损伤计算方法分析[J]. 爆炸与冲击, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486
引用本文: 张凤国, 刘军, 王言金, 王裴, 郑晖. 含氦泡辐照老化材料层裂损伤计算方法分析[J]. 爆炸与冲击, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486
ZHANG Fengguo, LIU Jun, WANG Yanjin, WANG Pei, ZHENG Hui. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles[J]. Explosion And Shock Waves, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486
Citation: ZHANG Fengguo, LIU Jun, WANG Yanjin, WANG Pei, ZHENG Hui. Simulation method of spall damage for self-radiation damage aging materials with helium bubbles[J]. Explosion And Shock Waves, 2023, 43(10): 103105. doi: 10.11883/bzycj-2022-0486

含氦泡辐照老化材料层裂损伤计算方法分析

doi: 10.11883/bzycj-2022-0486
基金项目: 国家自然科学基金项目(12271054,12172063);科学挑战专题(TZ2018001)
详细信息
    作者简介:

    张凤国(1969- ),男,硕士,研究员,zhang_fengguo@iapcm.ac.cn

  • 中图分类号: O346.1

Simulation method of spall damage for self-radiation damage aging materials with helium bubbles

  • 摘要: 辐照条件下,一些材料内部产生大量的氦泡等微缺陷,氦泡的大小和数密度随着辐照年限的增长而增长。氦泡分布特征的变化不仅影响材料本身的物理、力学性质,而且直接影响材料层裂损伤演化后期材料破坏颗粒度的分布特征。延性材料的层裂损伤演化过程一般包括孔洞的成核、增长和汇合,但因已有孔洞对新成核孔洞存在抑制作用,当初始孔洞数密度达到一定临界值时,材料内部没有新的孔洞成核,因此,层裂损伤的计算可以不考虑新孔洞成核的影响。本文中基于损伤早期演化的特征,给出了这一临界值的计算方法,并进一步探讨了含氦泡辐照老化钚材料层裂损伤的计算方法。同时,在完善孔洞增长(void growth, VG)层裂损伤模型中参数的确定方法的基础上,借助含氦泡常规铝材料的层裂实验结果,对此问题进行了定性的分析:在氦泡尺寸变化不大的情况下,当氦泡浓度低于临界氦泡浓度时,需要考虑初始氦泡以及新增孔洞的综合影响;反之,可以采用简单的层裂损伤模型,不需要计算孔洞成核,但由于增长孔洞之间的相互影响,损伤模型的初始损伤参数需要重新确定。
  • 图  1  不同辐照老化年限钚材料中氦泡浓度和大小变化的实验统计结果[3]

    Figure  1.  Diameter and concentration of helium bubbles in self-irradiated plutonium during aging process[3]

    图  2  纯铝材料自由面速度曲线的实验[13]和数值模拟结果

    Figure  2.  Free surface velocities of experimental data[13] and simulation ones for pure aluminum

    图  3  含氦泡铝材料自由面速度曲线的实验[13]和数值模拟结果

    Figure  3.  Free surface velocities of experimental data[13] and simulation ones for pure aluminum with helium bubbles

  • [1] 肖瑶, 黄理, 邱睿智, 等. 钚中氦行为研究进展 [J]. 材料导报A, 2020, 34(6) : 11137–11144. DOI: 10.11896/cldb.19050148.

    XIAO Y, HUANG L, QIU R Z, et al. Progress in the behavior of helium in plutonium [J]. Materials Reports A, 2020, 34(6) : 11137–11144. DOI: 10.11896/cldb.19050148.
    [2] MARTZ J C, SCHWARTZ A J. Plutonium: aging mechanisms and weapon pit lifetime assessment [J]. JOM Journal of the Minerals, Metals and Materials Society, 2003, 55: 19–23. DOI: 10.1007/s11837-003-0023-0.
    [3] SCHWARTZ A J, WALL M A, ZOCCO T G, et al. Characterization and modeling of helium bubbles in self-irradiated plutonium alloys [J]. Philosophical Magazine, 2005, 85: 479–488. DOI: 10.1080/02678370412331320026.
    [4] 敖冰云, 汪小琳, 陈丕恒, 等. 钚自辐照老化过程中氦效应理论研究进展 [J]. 原子能科学技术, 2009, 43(12): 37–42. DOI: 10.7538/yzk.2009.43.suppl.0037.

    AO B Y, WANG X L, CHEN P H, et al. Advances in theoretical research of helium effects in plutonium during aging process of self-radiation damage [J]. Atomic Energy Science and Technology, 2009, 43(12): 37–42. DOI: 10.7538/yzk.2009.43.suppl.0037.
    [5] 余鑫祥, 邓爱红, 程祥, 等. 钚中空位对氦泡生长影响的动力学Monte Carlo研究 [J]. 四川大学学报(自然科学版), 2010, 47(1): 133–136. DOI: 10.3969/j.issn.0490-6756.2010.01.026.

    YU X X, DENG A H, CHEN X, et al. A kinetic Monte Carlo study of the vacancies’ effects on helium bubble growth in plutonium [J]. Journal of Sichuan University (Natural Science Edition) , 2010, 47(1): 133–136. DOI: 10.3969/j.issn.0490-6756.2010.01.026.
    [6] VALONE S M, BASKES M I. Self-irradiation cascade simulations in plutonium metal: model behavior at high energy [J]. Journal of Computer-Aided Materials Design , 2007, 14: 357–365. DOI: 10.1007/s10820-007-9049-x.
    [7] SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. DOI: 10.1088/0965-0393/22/2/025012.
    [8] ZHOU T T, HE A M, WANG P. Dynamic evolution of He bubble and its effects on void nucleation-growth and thermomechanical properties in the spallation of aluminum [J]. Journal of Nuclear Materials, 2020, 542: 152496. DOI: 10.1016/j.jnucmat.2020.152496.
    [9] 万曦, 姚松林, 裴晓阳. 冲击加载下金属铝中氦泡演化行为的相场模拟 [J]. 高压物理学报, 2022, 36(1): 014203. DOI: 10.11858/gywlxb.20210791.

    WAN X, YAO S L, PEI X Y. Phase field modeling of the evolution of helium bubbles in shock loaded aluminum [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014203. DOI: 10.11858/gywlxb.20210791.
    [10] 王海燕, 祝文军, 邓小良, 等. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究 [J]. 物理学报, 2009, 58(2): 1154–1159. DOI: 10.3321/j.issn:1000-3290.2009.02.075.

    WANG H Y, ZHU W J, DENG X L, et al. Plastic deformation of cc and void in aluminum under shock loading [J]. Acta Physica Sinica, 2009, 58(2): 1154–1159. DOI: 10.3321/j.issn:1000-3290.2009.02.075.
    [11] 程扬名, 陈浩, 沈琴, 等. 纯铝中氦泡分布特点的研究 [J]. 原子能科学技术, 2018, 52(3): 385–389. DOI: 10.7538/yzk.2017.youxian.0312.

    CHENG Y M, CHEN H, SHEN Q, et al. Study on distribution characteristics of helium bubble in aluminum [J]. Atomic Energy Science and Technology, 2018, 52(3): 385–389. DOI: 10.7538/yzk.2017.youxian.0312.
    [12] 祁美兰, 贺红亮 , 王永刚, 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21(2): 145–150. DOI: 10.11858/gywlxb.2007.02.005.

    QI M L, HE H L, WANG Y G, et al. Dynamic analysis of helium bubble growth in the pure Al under high strain-rate loading [J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145–150. DOI: 10.11858/gywlxb.2007.02.005.
    [13] 李英华, 常敬臻, 张林, 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35(5): 054101. DOI: 10.11858/gywlxb.20210770.

    LI Y H, CHANG J Z, ZHANG L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. DOI: 10.11858/gywlxb.20210770.
    [14] 张凤国, 胡晓棉, 王裴, 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37(4): 699–704. DOI: 10.11883/1001-1455(2017)04-0699-06.

    ZHANG F G, HU X M, WANG P, et al. Numerical analysis of spall response in aluminum with helium bubble [J]. Explosion and Shock Waves, 2017, 37(4): 699–704. DOI: 10.11883/1001-1455(2017)04-0699-06.
    [15] GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. DOI: 10.1016/j.ijimpeng.2013.10.010.
    [16] DURAND O, SOULARD L. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions [J]. Journal of Applied Physics, 2013, 114: 194902. DOI: 10.1063/1.4832758.
    [17] 张凤国, 刘军, 何安民, 等. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用 [J]. 物理学报, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.

    ZHANG F G, LIU J, HE A M, et al. Modelling of spall damage evolution and fragment distributing for melted metals under shock release [J]. Acta Physica Sinica, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
    [18] TRUMEL H, HILD F, ROY G, et al. On probabilistic aspects in the dynamic degradation of ductile materials [J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 1980–1998. DOI: 10.1016/j.jmps.2009.07.001.
    [19] JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011.
    [20] CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43: 1626–1636. DOI: 10.1063/1.1661372.
    [21] WU X Y, RAMESH K T, WRIGHT T W. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 1–26. DOI: 10.1016/S0022-5096(02)00079-0.
    [22] SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47: 4814–4826. DOI: 10.1063/1.322523.
    [23] GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163: 217–224. DOI: 10.1007/s10704-009-9437-1.
    [24] 张凤国, 刘军, 王昆, 等. 孔洞增长层裂损伤模型初始参数的确定方法及其应用 [J]. 物理学报, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.

    ZHANG F G, LIU J, WANG K, et al. Determination method of parameters of void growth damage model and its application to simulation of spall test [J]. Acta Physica Sinica, 2020, 69(20): 204601. DOI: 10.7498/aps.69.20200527.
    [25] IKKURTHI V R, CHATURVWDI S. Use of different damage models for simulating impact-driven spallation in metal plates [J]. International Journal of Impact Engineering, 2004, 30 : 275–301. DOI: 10.1016/S0734-743X(03)00070-8.
    [26] 张凤国, 王裴, 王昆, 等. 关于延性金属材料层裂强度概念的解读 [J]. 防护工程, 2020, 42(5): 33–36

    ZHANG F G, WANG P, WANG K, et al. Interpretation of the concept of spalling strength of ductile metals materials [J]. Protective Engineering, 2020, 42(5): 33–36.
    [27] ROMANCHENKO V I, STEPANOV G V. Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel [J]. Journal of Applied Mechanics Technical Physics, 1980, 21: 555–561 DOI: 10.1007/BF00916495.
    [28] MAYER A E, MAYWER P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. International Journal of Fracture, 2020, 222: 171–195 DOI: 10.1007/s10704-020-00440-8.
  • 加载中
图(3)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  39
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2023-03-20
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回